Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Optimizing UPDATE Queries in PostgreSQL with Composite Primary Keys

  • vlogize
  • 2025-09-25
  • 0
Optimizing UPDATE Queries in PostgreSQL with Composite Primary Keys
Update using range over multiple primary key columns doesn't use indexsqlpostgresqlindexing
  • ok logo

Скачать Optimizing UPDATE Queries in PostgreSQL with Composite Primary Keys бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Optimizing UPDATE Queries in PostgreSQL with Composite Primary Keys или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Optimizing UPDATE Queries in PostgreSQL with Composite Primary Keys бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Optimizing UPDATE Queries in PostgreSQL with Composite Primary Keys

Discover how to efficiently perform updates in PostgreSQL using composite primary keys, ensuring optimal index usage for improved query performance.
---
This video is based on the question https://stackoverflow.com/q/62935400/ asked by the user 'Toni Cárdenas' ( https://stackoverflow.com/u/818420/ ) and on the answer https://stackoverflow.com/a/62936024/ provided by the user 'Mike Organek' ( https://stackoverflow.com/u/13808319/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Update using range over multiple primary key columns doesn't use index

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Addressing the Challenge: Updating Rows with Multiple Primary Keys in PostgreSQL

When working with multiple primary key columns in PostgreSQL, developers can encounter performance issues, especially when updating selected rows. The default behavior may lead to sequential scans rather than index scans, which can significantly impact the time it takes to retrieve and update data. In this guide, we will explore an ongoing issue and a proven solution, ensuring smooth updates while maintaining efficiency.

The Problem Statement

A user reported obstacles when attempting to update rows in a PostgreSQL table with two numeric columns serving as primary keys. The process involves:

Selecting a set of rows based on the primary key order.

Processing the selected rows.

Updating the rows using a WHERE clause that ideally should utilize indices for efficient execution.

Here’s how they initiated the selection for update in SQL:

[[See Video to Reveal this Text or Code Snippet]]

After selecting and processing the rows, the challenge arose with the UPDATE query's WHERE clause. Despite expressing a range condition on the primary key, the user experienced sequential scans rather than expected index scans.

Investigating the Initial Approach

Initially, the user attempted to create the WHERE clause in the following ways:

Using arrays to represent the primary keys:

[[See Video to Reveal this Text or Code Snippet]]

Building multiple conditions to represent ranges:

[[See Video to Reveal this Text or Code Snippet]]

While both solutions worked logically, they resulted in performance issues due to sequential scans.

The Effective Solution: Using Tuples

The breakthrough came when experimenting with tuples, mimicking Python's style. By using the ROW() function, this method effectively leveraged PostgreSQL's ability to perform index scans. Here’s the enhanced query structure:

[[See Video to Reveal this Text or Code Snippet]]

Why Tuples Work Better

Index Compatibility: The ROW() construct is well-aligned with how PostgreSQL handles composite indexes, allowing for better index usage.

Optimized Performance: The EXPLAIN ANALYZE command revealed a rapid execution time compared to sequential scans. The output demonstrated that both the functional index and the ROW tuples were utilized effectively, resulting in improved performance metrics.

Additional Recommendations

To ensure optimal performance when updating rows in your PostgreSQL database with composite primary keys:

Utilize Tuples: Leverage the ROW() syntax in your queries to facilitate index scans.

Analyze Query Plans: Always check the query execution plan with EXPLAIN ANALYZE to verify index usage and optimize accordingly.

Keep Statistics Updated: Regularly run ANALYZE to ensure the PostgreSQL query planner has the most accurate information.

Conclusion

Updating rows with multiple primary keys in PostgreSQL can pose significant performance challenges, but by utilizing tuples and the ROW() function, you can ensure efficient updates that leverage index scans. This approach not only enhances performance but also simplifies your query structure, leading to cleaner, more maintainable SQL code. By following these strategies, developers can minimize the risk of sequential scans and improve the overall efficiency of their PostgreSQL databases.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]