Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Solve TensorFlow Keras Time Series Prediction with X and y Having Different Shapes

  • vlogize
  • 2025-10-03
  • 0
How to Solve TensorFlow Keras Time Series Prediction with X and y Having Different Shapes
Tensorflow keras timeseries prediction with X and y having different shapespythontensorflowkerastime seriesregression
  • ok logo

Скачать How to Solve TensorFlow Keras Time Series Prediction with X and y Having Different Shapes бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Solve TensorFlow Keras Time Series Prediction with X and y Having Different Shapes или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Solve TensorFlow Keras Time Series Prediction with X and y Having Different Shapes бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Solve TensorFlow Keras Time Series Prediction with X and y Having Different Shapes

Learn how to effectively tackle the challenge of time series prediction in TensorFlow and Keras when your feature (`X`) and target (`y`) arrays have mismatched dimensions. Discover solutions that reconfigure your LSTM model for more accurate predictions.
---
This video is based on the question https://stackoverflow.com/q/62917282/ asked by the user 'NeStack' ( https://stackoverflow.com/u/5838180/ ) and on the answer https://stackoverflow.com/a/62917566/ provided by the user 'Marco Cerliani' ( https://stackoverflow.com/u/10375049/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Tensorflow keras timeseries prediction with X and y having different shapes

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Solving Dimension Mismatches in TensorFlow Keras Time Series Prediction

Time series prediction is a complex task often faced by data scientists and machine learning practitioners. One common issue arises when your feature (X) and target (y) arrays have different shapes. In this post, we'll break down how to handle this situation in TensorFlow Keras using a time series dataset where the target array represents future values to be predicted based on past data.

The Problem

In our scenario, we have:

A feature array X shaped (5000, 12), where 5000 represents samples and 12 represents features (e.g., temperature, humidity).

A target array y shaped (5000, 3, 12), where we aim to predict the next three days of features based on the past seven days.

When attempting to fit a model with these dimensions, we encounter the following error:

[[See Video to Reveal this Text or Code Snippet]]

This indicates that the architecture of our neural network does not properly accommodate the dimensions of our y array. So, how do we restructure our model to overcome this limitation?

Solutions

1. Use return_sequences=True in LSTM Layers

To address the dimension mismatch, utilize the return_sequences=True parameter in the LSTM layers. This way, the LSTM will return a sequence of outputs for each input sequence, which can then be processed in subsequent layers.

Here's how you can modify the code:

[[See Video to Reveal this Text or Code Snippet]]

2. Utilize Pooling Layers

Alternatively, you can introduce a pooling layer to reduce the output dimensionality. This approach helps condense the output data from the LSTM layer to match the expected dimensions of the target array.

Here's an example implementation using MaxPooling:

[[See Video to Reveal this Text or Code Snippet]]

3. Use RepeatVector for Output Reshaping

In scenarios where the LSTM output needs to be repeated for longer sequences, using the RepeatVector can be beneficial. This approach reshapes the output to match the dimensions of target y.

Here’s how you could implement it:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By following these approaches, you can effectively handle dimension mismatches between your feature and target arrays in TensorFlow Keras. Whether you decide to adjust the LSTM layers, use pooling strategies, or employ RepeatVector, each method offers a viable pathway to ensure your model can learn effectively based on the time series data provided.

If you're facing similar challenges, try out these solutions and share your experience in the comments!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]