Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Delete All Rows in a Pandas DataFrame Based on Specific Conditions

  • vlogize
  • 2025-05-25
  • 1
How to Delete All Rows in a Pandas DataFrame Based on Specific Conditions
Delete all rows of a pandas dataframe where certain conditions are met over all columnspythonpandas
  • ok logo

Скачать How to Delete All Rows in a Pandas DataFrame Based on Specific Conditions бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Delete All Rows in a Pandas DataFrame Based on Specific Conditions или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Delete All Rows in a Pandas DataFrame Based on Specific Conditions бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Delete All Rows in a Pandas DataFrame Based on Specific Conditions

Learn how to effectively remove rows in a Pandas DataFrame where every column meets certain criteria like empty strings, NaN, and NaT values.
---
This video is based on the question https://stackoverflow.com/q/70860088/ asked by the user 'JohnDole' ( https://stackoverflow.com/u/5346503/ ) and on the answer https://stackoverflow.com/a/70860105/ provided by the user 'jezrael' ( https://stackoverflow.com/u/2901002/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Delete all rows of a pandas dataframe where certain conditions are met over all columns

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Delete All Rows in a Pandas DataFrame Based on Specific Conditions

When working with data in a Pandas DataFrame, it is often necessary to clean your data by removing invalid or unwanted entries. A common problem that data analysts face is the need to delete entire rows where all columns contain specific values, such as empty strings, NaN, or NaT. In this guide, we will explore how to achieve this in an efficient manner.

The Problem

Imagine you have a DataFrame that contains several records, but you want to remove all rows that meet the following conditions across all columns:

Empty strings ""

Not a Number NaN

Not a Time NaT

You might have tried various methods such as dropna, replacing values, and others, but encountered difficulties in achieving the desired outcome. The good news is that Pandas provides powerful tools to help you filter out these rows effortlessly.

The Solution

To remove rows where every column meets the aforementioned conditions, you can use a combination of functions provided by the Pandas library. Let's break this solution down step by step.

Step 1: Create a Mask

First, you need to create a mask that identifies the rows meeting your criteria. You can do this by using the fillna() and isin() methods.

Here’s how you can create the mask:

[[See Video to Reveal this Text or Code Snippet]]

Explanation:

df.fillna(''): This replaces all NaN values in the DataFrame with empty strings.

.isin(["", "nan", "NaT"]): This checks if the values in the DataFrame are either empty strings, 'nan', or 'NaT', and returns a DataFrame of Boolean values (True or False).

Step 2: Filter the DataFrame

Next, you will want to filter the DataFrame using the mask while ensuring that you retain only the rows that do not match all conditions.

[[See Video to Reveal this Text or Code Snippet]]

Explanation:

mask.all(axis=1): This checks if all columns of each row are True based on our mask; it returns a Boolean Series where each element corresponds to whether all conditions were met in that row.

~: This negates the Boolean Series; it turns True values into False and vice versa, allowing you to select the rows you want to keep.

Complete Code Example

Here's how you can put all of this together in a complete example:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In this guide, we’ve shown you how to effectively delete rows from a Pandas DataFrame where all columns meet specific conditions like empty strings, NaN, and NaT. By utilizing a masking approach, you can efficiently filter your DataFrame with just a few lines of code.

Take this method and apply it to your own datasets to keep your data clean and manageable!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]