Peter Prettenhofer - Gradient Boosted Regression Trees in scikit-learn

Описание к видео Peter Prettenhofer - Gradient Boosted Regression Trees in scikit-learn

http://www.slideshare.net/PyData/grad...

This talk describes Gradient Boosted Regression Trees (GBRT), a powerful statistical learning technique with applications in a variety of areas, ranging from web page ranking to environmental niche modeling. GBRT is a key ingredient of many winning solutions in data-mining competitions such as the Netflix Prize, the GE Flight Quest, or the Heritage Health Price.

I will give a brief introduction to the GBRT model and regression trees -- focusing on intuition rather than mathematical formulas. The majority of the talk will be dedicated to an in depth discussion how to apply GBRT in practice using scikit-learn. We will cover important topics such as regularization, model tuning and model interpretation that should significantly improve your score on Kaggle. 00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Комментарии

Информация по комментариям в разработке