Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Delete Rows in a Numpy Array Based on Column Values

  • vlogize
  • 2025-05-21
  • 3
How to Delete Rows in a Numpy Array Based on Column Values
Delete rows where specific columns contain some valuepythonnumpynumpy ndarray
  • ok logo

Скачать How to Delete Rows in a Numpy Array Based on Column Values бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Delete Rows in a Numpy Array Based on Column Values или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Delete Rows in a Numpy Array Based on Column Values бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Delete Rows in a Numpy Array Based on Column Values

Learn how to effectively delete rows from a Numpy array where specific columns contain certain values, using Python code examples.
---
This video is based on the question https://stackoverflow.com/q/67749196/ asked by the user 'Kristian Slot' ( https://stackoverflow.com/u/14301475/ ) and on the answer https://stackoverflow.com/a/67749981/ provided by the user 'Kristian Slot' ( https://stackoverflow.com/u/14301475/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Delete rows where specific columns contain some value

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Delete Rows in a Numpy Array Based on Column Values

As you work with data in Python, particularly when using the Numpy library, you might find yourself needing to clean up your data by removing specific rows. In this guide, we’ll take a closer look at how to delete rows from a Numpy array when certain columns contain specific values, such as zeros.

The Problem

Imagine you have a dataset represented as a two-dimensional Numpy array with multiple columns. For instance, consider the following array:

[[See Video to Reveal this Text or Code Snippet]]

In this case, we want to delete every row where all the values in columns 2 to 5 are equal to zero. This needs to be done efficiently, especially if the dataset is large or if the conditions for deletion involve more complex criteria.

The Solution

Using Numpy Functions

We can achieve this using the np.delete function combined with boolean indexing. Here’s a simplified approach that we can use to solve the problem:

Load Your Data
Make sure you have your array set up correctly. In this case, for demonstration purposes, I will extract values from a CSV file as follows:

[[See Video to Reveal this Text or Code Snippet]]

Check for Conditions
You can check if any values in the specified columns (2 to 5) are non-zero. If all those values are zero for a row, that row is marked for deletion:

[[See Video to Reveal this Text or Code Snippet]]

Here, np.any(data[:, 2:5], axis=1) returns a boolean array that is True for each row where any column from 2 to 5 is non-zero. The ~ operator then inverts this array, so we can delete the rows where the condition is False.

Combine Conditions
If you want to add more conditions, such as checking if the values are greater than a certain threshold (e.g., 60000), you can perform another deletion:

[[See Video to Reveal this Text or Code Snippet]]

Example Code

Putting this all together, here’s a complete example that shows both the original data and the filtered result:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By using Numpy’s powerful functionality combined with boolean logic, you can efficiently filter out unwanted rows based on multiple criteria within your dataset. This method is not only effective but also scalable for larger datasets.

Hope this guide helps you as you clean and manipulate your data in Python!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]