Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Identifying Identical Vectors in a Multi-Dimensional Dot Product Using NumPy

  • vlogommentary
  • 2025-12-15
  • 0
Identifying Identical Vectors in a Multi-Dimensional Dot Product Using NumPy
Identify identical vectors as part of a multidimensional dot productpython-3.xnumpynumpy-ndarrayself-attention
  • ok logo

Скачать Identifying Identical Vectors in a Multi-Dimensional Dot Product Using NumPy бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Identifying Identical Vectors in a Multi-Dimensional Dot Product Using NumPy или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Identifying Identical Vectors in a Multi-Dimensional Dot Product Using NumPy бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Identifying Identical Vectors in a Multi-Dimensional Dot Product Using NumPy

Learn how to correctly calculate cosine similarities across multi-dimensional vectors with NumPy for precise identification of identical vectors.
---
This video is based on the question https://stackoverflow.com/q/79510247/ asked by the user 'Zac' ( https://stackoverflow.com/u/1159140/ ) and on the answer https://stackoverflow.com/a/79510567/ provided by the user 'hpaulj' ( https://stackoverflow.com/u/901925/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Identify identical vectors as part of a multidimensional dot product

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to drop me a comment under this video.
---
Introduction

When working with vectors in Python, especially using NumPy, it’s common to want to identify identical vectors or measure similarity. While this is straightforward in one dimension, extending it to multi-dimensional arrays requires careful handling of norms and dot products.

This guide clarifies how to properly compute similarities such that identical vectors yield a similarity score of 1.



The Problem

Consider two scenarios:

Single-Dimensional Vectors

[[See Video to Reveal this Text or Code Snippet]]

When a and b are identical, the cosine similarity is 1 as expected.



Multi-Dimensional Arrays

Using the same operation element-wise doesn’t yield 1 for identical rows:

[[See Video to Reveal this Text or Code Snippet]]

We expect diagonal elements to be 1 since rows are identical but they are not.



Why This Happens

a @ b does matrix multiplication, but to get the cosine similarity between rows, we need to multiply each row vector by the transpose of other rows.

np.linalg.norm(a) computes the norm of the entire array flattened, not row-wise.



Correct Approach

Compute the dot product of a with its transpose (a @ a.T) to get pairwise dot products of rows.

Calculate row-wise norms (np.linalg.norm(a, axis=1)).

Normalize the dot products using the outer product of the norms.

Example:

[[See Video to Reveal this Text or Code Snippet]]

Diagonal values are 1, indicating identical vectors.

Off-diagonal values indicate cosine similarity between different rows.



Summary

To identify identical vectors in a multi-dimensional array:

Use dot product with the transpose: a @ a.T

Calculate row-wise norms.

Normalize dot products by the product of corresponding row norms.

This method accurately determines vector similarity, including perfect matches 1 on the diagonal.



Additional Tips

np.outer(norms, norms) creates a matrix where each element is the product of the norms of the pair of vectors being compared.

This approach generalizes well to large datasets, such as in implementations of self-attention mechanisms or clustering algorithms.



Embrace these practices to ensure your vector similarity computations are mathematically sound and effective.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]