build a rag app using ollama and langchain

Описание к видео build a rag app using ollama and langchain

🚀 Unlock the power of AI in your workflows by building a Retrieval-Augmented Generation (RAG) system! 🌐 With RAG, you can seamlessly chat with documents, pulling up relevant information from your data sources and generating insightful, context-aware responses.
Whether it's for customer support, research, or data analysis, RAG helps you harness the full potential of your document repositories, turning them into dynamic conversational partners.
Start transforming your data into dialogue today! We are building a RAG system in the upcoming video using below tech stack!
#AI #RAG #conversationalai

Link to GitHub repo: https://github.com/hnawaz007/pythonda...
Link to Ollama setup:    • How to run LLM Locally? | Integrate L...  
Link to AI Series: https://hnawaz007.github.io/ai.html

Link to Channel's site:
https://hnawaz007.github.io/
--------------------------------------------------------------

💥Subscribe to our channel:
/ haqnawaz

📌 Links
-----------------------------------------
#️⃣ Follow me on social media! #️⃣

🔗 GitHub: https://github.com/hnawaz007
📸 Instagram:   / bi_insights_inc  
📝 LinkedIn: /  / haq-nawaz  
🔗 /hnawaz100
🚀 https://hnawaz007.github.io/

-----------------------------------------

Topics in this video (click to jump around):
==================================
0:00 - Overview of the RAG
1:50 - Process Source data
3:06 - Create Vector Store
3:54 - Hugging Face Authentication
4:46 - Create RAG Chain
6:26 - Interface Function
6:47 - Test the RAG App
7:45 - Final thoughts

Комментарии

Информация по комментариям в разработке