Tangent Line Equations, Slope, & Derivatives In Polar Form | Calculus 2

Описание к видео Tangent Line Equations, Slope, & Derivatives In Polar Form | Calculus 2

This calculus 2 video tutorial explains how to find the tangent line equation in polar form. You need to find the first derivative dy/dx of the polar equation and evaluate it to determine the slope in polar form. Next, convert the point from polar form to rectangular form and write the equation of the tangent in slope intercept form using the point-slope formula.

Parametric Equations - Introduction:
   • Parametric Equations Introduction, El...  

Derivatives of Parametric Functions:
   • Derivatives of Parametric Functions  

Tangent Lines of Parametric Curves:
   • Tangent Lines of Parametric Curves  

2nd Derivative - Parametric Equations:
   • Second Derivatives of Parametric Equa...  

3rd Derivative of Parametric Curves:
   • Differentiation of Parametric Curves ...  

___________________________________
Horizontal & Vertical Tangent Lines:
   • Horizontal Tangent Lines and Vertical...  

Area of Parametric Curves:
   • Area of Parametric Curves  

Arc Length of Parametric Curves:
   • Arc Length of Parametric Curves  

Surface Area of Parametric Curves:
   • Surface Area of Revolution of Paramet...  

Polar Coordinates - Introduction:
   • Polar Coordinates Basic Introduction,...  

Tangent Line Equations - Polar Form:
   • Tangent Line Equations, Slope, & Deri...  

____________________________________
Horizontal & Vertical Tangents - Polar:
   • Horizontal Tangent Lines & Vertical T...  

Area of Polar Curves:
   • Finding Area In Polar Coordinates  

Area Between Polar Curves:
   • Finding Area Bounded By Two Polar Curves  

Arc Length of Polar Curves:
   • Arc Length of Polar Curves  

Surface Area of Polar Curves:
   • Surface Area of Revolution of Polar C...  

_______________________________________
Final Exams and Video Playlists:
https://www.video-tutor.net/

Full-Length Videos and Worksheets:
  / collections  

Комментарии

Информация по комментариям в разработке