Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding Python: Why Changing One 2D Array Affects Another Array

  • vlogize
  • 2025-05-26
  • 0
Understanding Python: Why Changing One 2D Array Affects Another Array
Python. I cannot figure out why changing one 2d array is affecting another arraypythonarraysclassobjectgrid
  • ok logo

Скачать Understanding Python: Why Changing One 2D Array Affects Another Array бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding Python: Why Changing One 2D Array Affects Another Array или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding Python: Why Changing One 2D Array Affects Another Array бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding Python: Why Changing One 2D Array Affects Another Array

Explore why modifying one 2D array in Python can impact another and learn effective solutions to prevent this issue.
---
This video is based on the question https://stackoverflow.com/q/76936589/ asked by the user 'Deo Power' ( https://stackoverflow.com/u/22416109/ ) and on the answer https://stackoverflow.com/a/76936655/ provided by the user 'h-c' ( https://stackoverflow.com/u/22416016/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Python. I cannot figure out why changing one 2d array is affecting another array

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Why Changing One 2D Array Affects Another in Python

When working with 2D arrays (or lists of lists) in Python, a common issue developers encounter is the unintended modification of one array while attempting to duplicate it. This can be particularly perplexing, especially if you expect two arrays to operate independently. Today, we will explore this problem in depth and learn how to effectively solve it.

The Problem Explained

In Python, when you create a new variable that refers to a list (or 2D array), you are not creating a new separate list; instead, you are simply creating a new reference to the same list in memory. This means that changes to one list may inadvertently affect the other.

For example, consider the following code snippet where two arrays grid and gridN are handled:

[[See Video to Reveal this Text or Code Snippet]]

In this snippet, simply using list(grid) creates a new list gridN, but it only copies the references to the inner lists of grid — not the lists themselves. Therefore, when you modify elements in gridN, you also modify the corresponding elements in grid.

Breaking Down the Solution

To prevent this unintended behavior, you need a method to create a true copy of the 2D array. Here are the steps to achieve that:

1. Using the copy Module

Python provides a copy module that can help create shallow or deep copies of objects. A deep copy creates a new instance of every object within the original list, ensuring that modifications to one do not affect the other.

Here’s how to properly create a deep copy of your 2D array:

[[See Video to Reveal this Text or Code Snippet]]

2. Understanding Reference Behavior

References: When you assign gridN = list(grid), you are copying the reference of the lists within the grid. That's why changes in one affect the other.

Deep Copy: Using copy.copy() creates a separate instance of each object (in this case, cell objects), preventing shared references.

3. Correcting the For Loop Logic

Additionally, be cautious with the indexing in your nested loops. The following adjustment ensures that you maintain correct indexing:

[[See Video to Reveal this Text or Code Snippet]]

Example Code Implementation

Here’s a complete version incorporating all the discussed points:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Understanding how references work in Python is crucial when managing arrays and nested data structures. By employing the copy module correctly, you can avoid the pitfalls of shared references and ensure that your code operates as intended. Now, when using gridN, you can confidently modify it without worrying about affecting the original grid.

Happy coding! If you have more questions about Python's handling of arrays, feel free to leave them in the comments below.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]