Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding Indexing in NumPy Arrays: A Deep Dive into One-Hot Encoding

  • vlogize
  • 2025-09-04
  • 0
Understanding Indexing in NumPy Arrays: A Deep Dive into One-Hot Encoding
Index in numpy's arraypythonarraysnumpyindexing
  • ok logo

Скачать Understanding Indexing in NumPy Arrays: A Deep Dive into One-Hot Encoding бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding Indexing in NumPy Arrays: A Deep Dive into One-Hot Encoding или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding Indexing in NumPy Arrays: A Deep Dive into One-Hot Encoding бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding Indexing in NumPy Arrays: A Deep Dive into One-Hot Encoding

Explore the process of one-hot encoding in NumPy arrays and understand how indexing works with practical examples. Perfect for beginners!
---
This video is based on the question https://stackoverflow.com/q/64743148/ asked by the user 'Ogurchik' ( https://stackoverflow.com/u/2966342/ ) and on the answer https://stackoverflow.com/a/64743277/ provided by the user 'dominik-air' ( https://stackoverflow.com/u/14165590/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Index in numpy's array

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding Indexing in NumPy Arrays: A Deep Dive into One-Hot Encoding

If you're diving into data science, particularly in machine learning, you'll quickly encounter the term one-hot encoding. This technique is crucial for transforming categorical labels into a numerical format that machine learning algorithms can understand. A reader recently asked about a piece of code involving NumPy arrays in Python, specifically regarding how an index can be utilized in creating one-hot encoded labels. In this guide, we'll break down the solution and help clarify this concept!

The Problem Explained

The confusion arose from the following snippet of code:

[[See Video to Reveal this Text or Code Snippet]]

In this code, l is being used as an index to assign a value of 1 to a specific position in the one_hot_labels array. Let's take a closer look at how that works.

Setting Up Your Environment

To start working with NumPy and understanding the code, you’ll need to set up your environment with the following imports:

[[See Video to Reveal this Text or Code Snippet]]

After that, load the MNIST dataset, which contains images of handwritten digits:

[[See Video to Reveal this Text or Code Snippet]]

Next, reshape the training data:

[[See Video to Reveal this Text or Code Snippet]]

The above code reshapes the first 1000 training images into a 2D array and scales their pixel intensity.

What is One-Hot Encoding?

One-hot encoding is a method used to represent categorical variables as binary vectors. Here's how it works:

Each category is represented by a unique binary vector.

For example, if we have 10 classes (digits 0-9), each class will have a vector of length 10.

The position corresponding to the class will have a 1, while all other positions will have 0.

Analyzing the Code for One-Hot Encoding

Step 1: Initialization

The following line initializes a NumPy array filled with zeros, creating a container for our one-hot encoded labels:

[[See Video to Reveal this Text or Code Snippet]]

len(labels) gives the number of training examples (in this case, 1000).

The number 10 represents the ten possible digits.

This structure can be visualized as a list of lists (matrix) where each inner list represents a label that will be encoded.

Step 2: Filling the One-Hot Labels

Now, let’s break down the loop that populates our one-hot encoded array:

[[See Video to Reveal this Text or Code Snippet]]

enumerate(labels) provides both the index (i) and the actual label (l) for each training example.

one_hot_labels[i] refers to the ith row in our one-hot encoded array, which corresponds to the current training example.

l is the label (a digit between 0 and 9), which specifies the index in the one-hot encoded format that should get the value 1.

Visual Example

Suppose the labels for the first three examples are [2, 0, 1]. The one-hot encoding would be filled as follows:

For label 2 (first example): one_hot_labels[0][2] = 1

For label 0 (second example): one_hot_labels[1][0] = 1

For label 1 (third example): one_hot_labels[2][1] = 1

The output would look something like this:

[[See Video to Reveal this Text or Code Snippet]]

By the end of the loop, your one_hot_labels will have a properly encoded representation of all labels.

Conclusion

Understanding indexing in NumPy arrays is fundamental when working with one-hot encoding and other array manipulations in Python. The snippet you encountered from the book “Grokking Deep Learning” is a practical example of how to manipulate arrays efficiently.

With this guide, we hope to alleviate some of the confusion regarding how indexing works in creating one-hot encoded labels. As you continue your journey in deep learning, mastering such concepts will empower you to build more sophisticated m

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]