Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Handle Empty Fields in Pandas json_normalize for Nested JSON Structures

  • vlogize
  • 2025-10-27
  • 3
How to Handle Empty Fields in Pandas json_normalize for Nested JSON Structures
pandas json normalize with some empty record_pathpythonpandasdataframe
  • ok logo

Скачать How to Handle Empty Fields in Pandas json_normalize for Nested JSON Structures бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Handle Empty Fields in Pandas json_normalize for Nested JSON Structures или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Handle Empty Fields in Pandas json_normalize for Nested JSON Structures бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Handle Empty Fields in Pandas json_normalize for Nested JSON Structures

Discover how to normalize nested JSON data in Pandas while managing empty records and avoiding KeyErrors!
---
This video is based on the question https://stackoverflow.com/q/67784772/ asked by the user 'Ankit Chaurasia' ( https://stackoverflow.com/u/6850513/ ) and on the answer https://stackoverflow.com/a/67786237/ provided by the user 'Serge de Gosson de Varennes' ( https://stackoverflow.com/u/5363686/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: pandas json normalize with some empty record_path

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Handle Empty Fields in Pandas json_normalize for Nested JSON Structures

In the world of data analysis, working with JSON data is a common task. However, users often encounter challenges when trying to normalize nested JSON, especially when dealing with empty fields. One common error that crops up in this context is the KeyError, specifically while attempting to access non-existent data in nested structures. In this post, we'll focus on a practical solution to normalize nested JSON data in Pandas while effectively managing these empty fields.

Understanding the Problem

Let’s consider the following JSON data that represents a list of individuals, some of whom do not have an address field populated:

[[See Video to Reveal this Text or Code Snippet]]

As seen, the second record lacks an address (denoted by an empty array). When trying to normalize this JSON with the following command, we encounter a KeyError:

[[See Video to Reveal this Text or Code Snippet]]

The output we desire should look like this:

[[See Video to Reveal this Text or Code Snippet]]

Let's Break Down the Solution

We need to normalize this data efficiently while addressing the empty fields. Here’s a step-by-step approach:

Step 1: Inserting Data into a DataFrame

First, let’s convert the JSON data into a DataFrame.

[[See Video to Reveal this Text or Code Snippet]]

This gives us a DataFrame as follows:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Handling NaN Values

To deal with the problematic NaN values, we can use the explode method to transform each list element to a separate record, which will help expose JSON strings rather than lists of JSON.

[[See Video to Reveal this Text or Code Snippet]]

The output now looks like this:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Replacing NaN with Empty Dictionaries

Next, we can replace the NaN values in the address column with empty dictionaries. This paves the way for normalization without hitting any errors.

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Normalizing the DataFrame

Now, we can normalize the data using pd.json_normalize and drop the original address column.

[[See Video to Reveal this Text or Code Snippet]]

This results in the desired output:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Normalizing nested JSON data in Pandas can lead to complications, especially when empty fields are present. However, by following the outlined steps—specifically addressing NaN values and generating empty dictionaries—we can successfully normalize our data without falling into the trap of KeyErrors. When dealing with datasets, always prepare for such inconsistencies to retain data integrity in your analyses.

Using the above approach will help streamline your data processing tasks significantly. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]