Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Identify and Remove Identical Columns in Pandas DataFrames

  • vlogize
  • 2025-05-27
  • 1
How to Identify and Remove Identical Columns in Pandas DataFrames
Find if there are two columns with different names but identical values using pandaspythonpandasduplicates
  • ok logo

Скачать How to Identify and Remove Identical Columns in Pandas DataFrames бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Identify and Remove Identical Columns in Pandas DataFrames или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Identify and Remove Identical Columns in Pandas DataFrames бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Identify and Remove Identical Columns in Pandas DataFrames

Learn how to use pandas to find and eliminate duplicate columns with identical values, even if they have different names.
---
This video is based on the question https://stackoverflow.com/q/65522467/ asked by the user 'Reut' ( https://stackoverflow.com/u/12285101/ ) and on the answer https://stackoverflow.com/a/65522604/ provided by the user 'BENY' ( https://stackoverflow.com/u/7964527/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Find if there are two columns with different names but identical values using pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Identify and Remove Identical Columns in Pandas DataFrames

When working with large datasets in Python, particularly with the pandas library, you may encounter situations where multiple columns contain the same values but have different names. This can lead to confusion and unnecessary redundancy in your data analysis. In this post, we will explore how to check for and drop such duplicate columns effectively.

The Problem

Imagine you have a DataFrame that consists of 30 columns and 500,000 rows. Within this structure, it’s possible to have two columns that hold the exact same values, yet they are named differently. For instance, if you have a table like this:

[[See Video to Reveal this Text or Code Snippet]]

In this example, the column num4 is identical to num1. Your goal is to eliminate such columns to streamline your DataFrame, making your data cleaner and your analysis more efficient.

The Solution

Fortunately, pandas provides functionality that allows you to identify and remove these duplicate columns. Here are two methods to do so:

Method 1: Using the duplicated Function

You can leverage the duplicated function along with transposing the DataFrame to identify duplicates. Here’s how to do it:

[[See Video to Reveal this Text or Code Snippet]]

In this code:

df.T transposes the DataFrame, turning columns into rows.

duplicated() checks for duplicate rows in the transposed DataFrame.

~ negates the boolean array, resulting in only unique columns being retained.

Method 2: Using drop_duplicates

Another straightforward approach is to use the drop_duplicates function on the transposed DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Here’s what happens:

df.T again transposes the DataFrame to consider columns as rows.

drop_duplicates() removes duplicate rows that have identical values.

Finally, the second .T transposes it back to the original format.

Conclusion

By using either of the methods described above, you can efficiently identify and remove columns in a pandas DataFrame that contain identical values, even if they do not share the same name. This will help you to maintain cleaner, more manageable datasets, ultimately leading to better data analysis and insights.

Now you can confidently streamline your DataFrames and keep only the columns that add value to your analysis. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]