Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding the Global Variable Misunderstanding in Python: Keep Your Data Intact!

  • vlogize
  • 2025-10-11
  • 0
Understanding the Global Variable Misunderstanding in Python: Keep Your Data Intact!
Misunderstanding of global variable in Pythonpythonpandas
  • ok logo

Скачать Understanding the Global Variable Misunderstanding in Python: Keep Your Data Intact! бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding the Global Variable Misunderstanding in Python: Keep Your Data Intact! или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding the Global Variable Misunderstanding in Python: Keep Your Data Intact! бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding the Global Variable Misunderstanding in Python: Keep Your Data Intact!

Learn how to work with global variables in Python without accidentally modifying your data frames. Get insights into using the `copy()` method effectively!
---
This video is based on the question https://stackoverflow.com/q/68469622/ asked by the user 'ZetDen' ( https://stackoverflow.com/u/16432334/ ) and on the answer https://stackoverflow.com/a/68469691/ provided by the user 'devReddit' ( https://stackoverflow.com/u/16375479/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Misunderstanding of global variable in Python

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the Global Variable Misunderstanding in Python: Keep Your Data Intact!

When you're coding in Python, especially with libraries like pandas, managing variables can sometimes lead to unexpected behaviors – especially when it comes to global variables. One common issue developers encounter is when a function alters a global variable, affecting the data unintentionally. In this guide, we will explore a typical scenario, dissect it, and provide a clean and effective solution to avoid this pitfall.

The Problem: Unintended Edits to Global Variables

Let’s take a look at a practical example to illustrate this problem. In the code snippet below, we have a global DataFrame df, and we want to create a variable a using a function while maintaining the original state of df.

[[See Video to Reveal this Text or Code Snippet]]

Actual Output

This code produces the following output:

[[See Video to Reveal this Text or Code Snippet]]

As you can see, modifying a (which was assigned to df) also changed the content of df, which was not our intention. We wanted df to remain as it was, with a value of 1 in column A.

Expected Output

What we expected didn’t come to fruition. We aimed for the output to remain as follows:

[[See Video to Reveal this Text or Code Snippet]]

The Root Cause: Referencing and Mutability

The underlying issue comes from Python's behavior with mutable objects, such as DataFrames. When you assign a = df, both a and df refer to the same object in memory. Therefore, any changes made to a will directly affect df. In essence, they are two variable names pointing to the same data rather than two distinct copies of data.

Solution: Creating a Copy

To avoid unintentional side effects when working with global variables, you can use the copy() method provided by pandas to create a duplicate of the DataFrame. Here’s how to implement it in your function:

[[See Video to Reveal this Text or Code Snippet]]

By using df.copy(), you ensure that a is an independent instance of the DataFrame, and any modifications to a will not alter df. This way, you can safely manipulate a as needed.

Conclusion: Preventing Misunderstandings with Global Variables

Understanding how assignments work in Python, especially when dealing with mutable objects like pandas DataFrames, is crucial in avoiding frustrating bugs and unintended behaviors. By following the proper practices, such as making copies of the data when necessary, you can work with global variables effectively and keep your data intact.

In summary, next time you find yourself needing to work with global variables, remember:

Use copy() to prevent unintended alterations to your original data.

Understand the implications of mutable objects in Python.

Implementing these suggestions will help ensure that your data handling in Python remains intact and free of unexpected changes. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]