Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Improving Multiprocessing Efficiency for BIG Array Computation in Python

  • vlogize
  • 2025-05-17
  • 0
Improving Multiprocessing Efficiency for BIG Array Computation in Python
Multiprocessing pool map for a BIG array computation go very slow than expectedpython 3.xcluster computingthreadpoolpython multiprocessinghpc
  • ok logo

Скачать Improving Multiprocessing Efficiency for BIG Array Computation in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Improving Multiprocessing Efficiency for BIG Array Computation in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Improving Multiprocessing Efficiency for BIG Array Computation in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Improving Multiprocessing Efficiency for BIG Array Computation in Python

Explore common pitfalls and solutions for speeding up BIG array computations with Python's multiprocessing, ensuring your code runs smoothly and efficiently.
---
This video is based on the question https://stackoverflow.com/q/72670329/ asked by the user 'CEB' ( https://stackoverflow.com/u/16074142/ ) and on the answer https://stackoverflow.com/a/72676008/ provided by the user 'pluto' ( https://stackoverflow.com/u/17338588/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Multiprocessing pool map for a BIG array computation go very slow than expected

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Tackling Slow Multiprocessing in Python for BIG Array Computation

When working with large datasets, especially in scientific computing, performance becomes critical. One such scenario involves using Python's multiprocessing library to process BIG arrays. If you've ever tried to leverage multiprocessing.Pool for a large array computation only to be disappointed by slower-than-expected execution times, you're not alone. Let's dive into the problem and see how to effectively optimize your code.

The Problem: Slow Processing with Multiprocessing Pool

You might find yourself in a situation where you need to compute values from a large 3D array. The task could encompass generating multiple output files based on your computations. In a typical case, a script follows a structure that works well with smaller arrays, yet when applied to larger datasets, it may introduce complications like memory usage issues, slow processing times, and even failure to generate the expected output files.

For instance, running a script utilizing command like mpirun python3 sample_prob_func.py with a heavy computational load may not yield any error messages, but the script fails to store the output files as intended. This indicates that there’s a deeper issue at hand regarding how resources are being managed and utilized.

The Solution: Improved Script Configuration

To overcome the performance bottlenecks and ensure that your multiprocessing tasks are executed efficiently, consider implementing the following strategies:

1. Adjusting the Number of Processes

When you're using a job scheduler, such as SLURM on a cluster, you should set the number of processors allocated to your task. This can be done by retrieving the CPU count dynamically. Here’s how to implement that in your script:

[[See Video to Reveal this Text or Code Snippet]]

By defining ncpus, you're ensuring you appropriately leverage the resources available to you.

2. Modifying the Pool Initialization

Next, you need to adjust the way you initialize the multiprocessing pool in your parallel_function. Replace the static processes count with the dynamic variable you just defined:

[[See Video to Reveal this Text or Code Snippet]]

This ensures that your code respects the resource boundaries set by your job scheduler and can help alleviate issues that may occur with overcommitting CPU resources.

3. Example Modified Function

Here’s a consolidated view of how these changes look in context with your existing parallel_function:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By implementing these changes, you can enhance the efficiency of your multiprocessing tasks in Python. Ensuring that you dynamically adjust the number of processes to match your system's capabilities can lead to significant performance gains, especially when working with LARGE datasets. Don't let inefficient resource allocation slow you down—apply these insights to streamline your computations and save precious time.

With these adjustments, you can confidently tackle BIG array computations and ensure that your output files are generated as intended without undue delay. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]