Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Cardiovascular Modeling with LHMF and Digital Twins

  • NetbookLM
  • 2024-10-24
  • 7
Cardiovascular Modeling with LHMF and Digital Twins
  • ok logo

Скачать Cardiovascular Modeling with LHMF and Digital Twins бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Cardiovascular Modeling with LHMF and Digital Twins или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Cardiovascular Modeling with LHMF and Digital Twins бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Cardiovascular Modeling with LHMF and Digital Twins

Cardiovascular disease (CVD) is a major cause of death globally, making the development of accurate and effective methods for diagnosis, monitoring, and treatment a top priority in the healthcare industry. This challenge is being addressed with a proactive approach using Digital Twin technology, which creates virtual representations of physiological systems for analysis and prediction. A novel framework specifically designed for cardiovascular health is the Longitudinal Hemodynamic Mapping Framework (LHMF).

Limitations of Traditional Cardiovascular Models

Existing cardiovascular modeling approaches, such as 1D, 3D Computational Fluid Dynamics (CFD), and reduced-order models, have limitations that hinder their effectiveness in real-world clinical scenarios.

Traditional methods suffer from these drawbacks:

1D models simplify the circulatory system as a network of tubes, sacrificing spatial resolution for computational efficiency. These models cannot capture the intricate flow dynamics in complex geometries like stenotic arteries
.
3D CFD models, based on Navier-Stokes equations, offer accurate spatial resolution and can capture complex flow patterns. However, they are computationally demanding and limited to simulating short time scales, typically only a few cardiac cycles. This limits their ability to track long-term disease progression.

Reduced-order models aim to bridge the gap between 1D and 3D CFD models by reducing the problem's complexity while retaining key features. However, they are not adaptable to real-time data from wearable sensors, limiting their use for personalized healthcare.
LHMF: A Step Forward in Cardiovascular Modeling
LHMF addresses these limitations by combining:

Long-term simulation capabilities of 1D models
Spatial accuracy of 3D CFD
Computational efficiency of reduced-order models
Adaptability to real-time patient data

Key features of LHMF:

Simulates millions of heartbeats, capturing subtle hemodynamic changes over time. Traditional models can only simulate 3-5 cardiac cycles.
Integrates real-time data from wearable sensors like heart rate monitors, blood pressure sensors, and pulse oximeters. This dynamic data integration ensures the model stays accurate and reflective of the patient's current condition.

Uses High-Performance Computing (HPC) for faster and detailed simulations, making it suitable for clinical applications requiring timely insights. LHMF accelerates simulation times by 10-100x compared to desktop-based approaches.

Supports immersive visualization through Virtual Reality (VR) [16, 17]. VR enhances digital twins by providing immersive, interactive environments for clinicians to engage with complex physiological data [16].
Methodology of LHMF
LHMF utilizes advanced numerical techniques to:

Solve the incompressible Navier-Stokes equations for blood flow
Incorporate real-time physiological data using Kalman filtering for dynamic model updates

The high-order discontinuous Galerkin (DG) method is a key component of LHMF, offering advantages like:

High-order accuracy to ensure accurate representation of complex flow patterns in intricate geometries

Local conservation properties for ensuring the conservation of mass and momentum within the simulation

Adaptability to complex geometries, making it suitable for simulating blood flow in complex vascular networks

LHMF also integrates real-time data from wearable devices such as:

Electrocardiogram (ECG) for heart rate and rhythm data

Blood pressure (BP) monitors for continuous or intermittent BP measurements

Pulse oximetry (SpO2) for blood oxygen saturation data

Activity trackers for physical activity data, which can be used to estimate metabolic demands

This data is preprocessed using techniques like noise filtering, outlier detection, and data synchronization before being assimilated into the LHMF model.

Validation and Performance

LHMF's validation involves using:

Simulated data based on benchmark problems

In vitro data from laboratory setups mimicking human vasculature
Clinical data from patient-specific sources like medical imaging and wearable sensors

Key performance metrics for LHMF:

Root Mean Square Error (RMSE) for quantifying the difference between simulated and measured flow velocities

Correlation Coefficient (R2) for measuring the correlation between simulated and observed data

Computational efficiency evaluated by comparing simulation time and resource utilization with traditional CFD solvers like OpenFOAM

Ethical and Privacy Considerations

The use of digital twins and real-time patient data raises ethical and privacy concerns. LHMF addresses these concerns by implementing:

Robust data security measures like encryption and access control to protect patient privacy and comply with regulations like HIPAA and GDPR

Data anonymization and de-identification techniques whenever possible

Clear guidelines regarding data ownership, access, and sharing to give patients control over their data

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]