Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Split a DataFrame in Python from Objects into Multiple Columns

  • vlogize
  • 2025-10-05
  • 0
How to Split a DataFrame in Python from Objects into Multiple Columns
  • ok logo

Скачать How to Split a DataFrame in Python from Objects into Multiple Columns бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Split a DataFrame in Python from Objects into Multiple Columns или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Split a DataFrame in Python from Objects into Multiple Columns бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Split a DataFrame in Python from Objects into Multiple Columns

Learn effective methods to `split a pandas DataFrame` with string data into separate columns. Simplify your data transformation tasks using Python!
---
This video is based on the question https://stackoverflow.com/q/63849171/ asked by the user 'Aly' ( https://stackoverflow.com/u/13906221/ ) and on the answer https://stackoverflow.com/a/63849270/ provided by the user 'Scott Boston' ( https://stackoverflow.com/u/6361531/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to split dataframe made from objects?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Split a DataFrame in Python from Objects into Multiple Columns

If you're working with data in Python and using the pandas library, you may find yourself in a situation where you need to split a column in a DataFrame into two or more columns. This scenario often arises when you have data represented as strings containing multiple pieces of information. For instance, you might have a DataFrame where one column contains values like 38 A, and you want to split this into two separate columns: one for numbers and another for letters. In this guide, we will explore how to accomplish this effectively.

Understanding the Problem

Imagine you have a DataFrame that looks like this:

[[See Video to Reveal this Text or Code Snippet]]

Here, the DataFrame consists of just one column of data, where each entry contains both a number and a letter. However, the current structure is not ideal for analysis or manipulation since both pieces of information are crammed into a single column. To tackle this issue, we will split this column into two distinct columns: Number and Letter. The desired outcome would be:

[[See Video to Reveal this Text or Code Snippet]]

In the next sections, we'll look at two straightforward methods to achieve this using pandas' powerful string manipulation capabilities.

Method 1: Using String Accessor and Split

The first method involves using the str.split() function, which is an efficient way to break a string into its components.

Step-by-step Instructions:

Create your DataFrame: Start by creating your DataFrame with the original data.

Split the column: Utilize the str.split() function to divide the string based on whitespace.

Name the columns: Finally, set names for the new columns.

Here is how you can do this in code:

[[See Video to Reveal this Text or Code Snippet]]

Output

After executing the above code, you'll see:

[[See Video to Reveal this Text or Code Snippet]]

Method 2: Using String Accessor and Extract with Regular Expressions

Another powerful method to split your column is to use str.extract() combined with regular expressions. This method allows for greater flexibility, especially if the patterns in your strings are complex.

Step-by-step Instructions:

Create your DataFrame: As with Method 1, start with your original DataFrame.

Extract using regex: Use str.extract() to define the groups for the number and the letter.

Display the result: The extracted groups automatically become your new columns.

Here's an example implementation:

[[See Video to Reveal this Text or Code Snippet]]

Output

When you run this code, you'll obtain the same desired DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Transforming data into a more usable format is a crucial part of data analysis, and with pandas, it's easier than ever. We discussed two methods to split a DataFrame column containing strings into multiple columns. The first method uses str.split(), while the second method employs str.extract() with regular expressions. Depending on your data structure and complexity, you can choose either method to optimize your workflow.

Feel free to use these techniques in your own projects, and happy data wrangling with pandas!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]