Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Strip Timestamp Information in Pandas Based on Criteria

  • vlogize
  • 2025-04-15
  • 0
How to Strip Timestamp Information in Pandas Based on Criteria
Strip timestamp info based on criteria using pandaspythonpandasdataframedatetimepandas groupby
  • ok logo

Скачать How to Strip Timestamp Information in Pandas Based on Criteria бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Strip Timestamp Information in Pandas Based on Criteria или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Strip Timestamp Information in Pandas Based on Criteria бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Strip Timestamp Information in Pandas Based on Criteria

Learn how to efficiently replace timestamp values in pandas DataFrames based on matching criteria. Simplify your data manipulation today!
---
This video is based on the question https://stackoverflow.com/q/68373084/ asked by the user 'The Great' ( https://stackoverflow.com/u/10829044/ ) and on the answer https://stackoverflow.com/a/68373292/ provided by the user 'jezrael' ( https://stackoverflow.com/u/2901002/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Strip timestamp info based on criteria using pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Strip Timestamp Information in Pandas Based on Criteria

Working with timestamps in pandas can sometimes be tricky, especially when you need to update certain time values based on specific conditions. In this guide, we will explore a common use case where you need to replace the timestamp 00:00:00 in logout_datetime records with the corresponding login_datetime timestamp when the dates match.

The Problem Statement

Consider a scenario where you have a pandas DataFrame containing login and logout timestamps. The logout_datetime sometimes has 00:00:00 as its time component when the date matches with login_datetime. Your goal is to replace this time value with the time from login_datetime if the dates align.

Here's how the DataFrame looks initially:

[[See Video to Reveal this Text or Code Snippet]]

After manipulation, your expectation is that the logout_datetime appears as follows:

login_datetimelogout_datetime2013-05-07 09:27:002013-07-15 09:27:002013-09-08 11:21:002013-09-08 11:21:002014-06-06 08:00:002014-06-06 08:00:002014-06-06 05:00:002014-06-06 05:00:002011-12-11 10:00:002011-12-11 10:00:00The Solution

To achieve this, we can break down the solution as follows:

Create a Date Mask: Identify which rows have matching dates in the login_datetime and logout_datetime.

Convert Time to Timedelta: Convert the time component of login_datetime into a format that can be easily worked with.

Update the Logout Time: Use np.where to conditionally replace logout_datetime times when dates match.

Step-by-Step Implementation

Let's implement these steps in code.

[[See Video to Reveal this Text or Code Snippet]]

Result

After executing the code above, you will see an updated DataFrame like this:

login_datetimelogout_datetimenew_logout_time2013-05-07 09:27:002013-07-15 09:27:002013-07-15 09:27:002013-09-08 11:21:002013-09-08 00:00:002013-09-08 11:21:002014-06-06 08:00:002014-06-06 08:00:002014-06-06 08:00:002014-06-06 05:00:002014-06-06 00:00:002014-06-06 05:00:002011-12-11 10:00:002011-12-11 00:00:002011-12-11 10:00:00Conclusion

By using pandas' powerful manipulation tools, we've successfully replaced specific timestamp values in our DataFrame based on conditional criteria. This method not only simplifies your data but also ensures accuracy in your records. Keep exploring pandas to find even more ways to streamline your data tasks!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]