Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Maxwell First Equation : Derivation in easy steps || Engineering Physics

  • Above Engineering
  • 2026-01-27
  • 23
Maxwell First Equation : Derivation in easy steps  || Engineering Physics
Maxwell first equation derivationmaxwell equations in electromagnetic theorygauss law differential formderivation of maxwell's 1st equationphysical significance of maxwells equationselectrostatics engineering physicsrgpv engineering physics unit 1maxwell equation explained in hindiintegral and differential form of maxwell equationselectric flux and charge densityrelation between D and E vectorselectric displacement vector explanationbtech 1st sem physics
  • ok logo

Скачать Maxwell First Equation : Derivation in easy steps || Engineering Physics бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Maxwell First Equation : Derivation in easy steps || Engineering Physics или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Maxwell First Equation : Derivation in easy steps || Engineering Physics бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Maxwell First Equation : Derivation in easy steps || Engineering Physics

​‪@aboveengineering‬
Maxwell's First Equation Derivation | Gauss's Law Explained | Electromagnetic Theory | Engineering Physics

In this lecture of **Engineering Physics / Electromagnetic Theory**, we derive and explain **Maxwell's First Equation**, which is the cornerstone of Electrostatics.

Maxwell's First Equation is essentially the differential form of **Gauss’s Law**. It mathematically relates the electric field to the charge density, showing that electric charges are the sources (or sinks) of electric fields. This derivation is frequently asked in B.Tech Semester Exams (RGPV, AKTU, VTU) and is fundamental for understanding wave propagation.

In this video, we move step-by-step from the Integral form to the Differential form using the Gauss Divergence Theorem.

---

🔗 Previous Lecture Links:

   • Trapezoidal Method to find Area || Basic c...  

   • BETA and GAMMA functions explained || Engi...  

   • Relation between Beta & Gamma function || ...  

   • Otto Cycle Explained | PV & TS Diagram | E...  

   • What is Divergence || engineering physics ...  

   • Gauss Divergence Theorem with Proof || Der...  

   • Maxwell Equations Explained || Full concep...  

📌 Topics Covered in This Lecture:

*Introduction to Maxwell's Equations* – Why they are important.
*Statement of Gauss’s Law* – Total flux through a closed surface.
*Integral Form* – .
*Applying Gauss Divergence Theorem* – Converting Surface Integral to Volume Integral.
*Derivation of Differential Form* – or .
*Physical Significance* – How charge density creates divergence in the field.

---

📚 Recommended Books (Standard References):

Introduction to Electrodynamics – David J. Griffiths
Engineering Physics – H.K. Malik & A.K. Singh
Concepts of Physics – H.C. Verma (Vol 2)
Higher Engineering Mathematics – B.S. Grewal
Engineering Physics – D.K. Bhattacharya
Electromagnetics – Kraus & Fleisch

---

🔔 Stay Connected:

👉 *Join Our Telegram Group (Notes, PYQs & Updates):*
[https://t.me/1PJ1V29Wm0NiNDll](https://t.me/1PJ1V29Wm0NiNDll)


Maxwell first equation derivation, maxwell equations in electromagnetic theory, gauss law differential form, derivation of maxwell's 1st equation, physical significance of maxwells equations, divergence of electric field, electrostatics engineering physics, electromagnetic theory btech 1st year, rgpv engineering physics unit 1, maxwell equation explained in hindi, integral and differential form of maxwell equations, gauss divergence theorem application, electric flux and charge density, vector calculus in electromagnetism, maxwell first equation engineering physics, relation between D and E vectors, permittivity of free space, electric displacement vector explanation, engineering physics important questions, btech 1st sem physics, maxwell equations one shot, electromagnetic field theory lectures, physics for engineers, rgpv exam preparation physics, aktu engineering physics maxwell, vtu physics module 2, david griffiths electrodynamics, maxwell equation 1 proof, what is displacement vector, electric field intensity calculation, engineering physics notes pdf, applied physics maxwell equations, maxwell equations summary, gauss law for electric field, maxwells equation 1 derivation step by step, electromagnetic waves basics, physics exam tips btech, above engineering channel, aboveengineering physics, science and engineering physics.

#maxwellequations #engineeringphysics #electromagnetism #gausslaw #electrostatics #rgpv #btechphysics #aboveengineering #physicsderivation #vectorcalculus #electricalengineering #physicsclass #examready #universityexams #science

---

⚖️ COPYRIGHT DISCLAIMER

Copyright Disclaimer Under Section 107 of the Copyright Act 1976, allowance is made for "Fair Use" for purposes such as teaching, scholarship, comment, and research. Non-profit, educational, or personal use tips the balance in favor of fair use.

📢 *Subscribe to @aboveengineering* to 'Rise Above Average' and master your Engineering subjects!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]