Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports

  • Jungdam Won
  • 2021-07-02
  • 2745
Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports
  • ok logo

Скачать Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports

ProjectCode: FairPlay

Publication

Jungdam Won, Deepak Gopinath, and Jessica Hodgins, Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports, ACM Transactions on Graphics (SIGGRAPH 2021).

Abstract

In two-player competitive sports, such as boxing and fencing, athletes often demonstrate efficient and tactical movements during a competition. In this paper, we develop a learning framework that generates control policies for physically simulated athletes who have many degrees-of-freedom. Our framework uses a two step-approach, learning basic skills and learning boutlevel strategies, with deep reinforcement learning, which is inspired by the way that people how to learn competitive sports. We develop a policy model based on an encoder-decoder structure that incorporates an autoregressive latent variable, and a mixture-of-experts decoder. To show the effectiveness of our framework, we implemented two competitive sports, boxing and fencing, and demonstrate control policies learned by our framework that can generate both tactical and natural-looking behaviors. We also evaluate the control policies with comparisons to other learning configurations and with ablation studies.

Links

https://research.fb.com/publications/...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]