Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Victor Kalvin : Determinants of Laplacians on compact surfaces with conical singularities

  • Cirget CRM Séminaire
  • 2022-11-26
  • 507
Victor Kalvin : Determinants of Laplacians on compact surfaces with conical singularities
  • ok logo

Скачать Victor Kalvin : Determinants of Laplacians on compact surfaces with conical singularities бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Victor Kalvin : Determinants of Laplacians on compact surfaces with conical singularities или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Victor Kalvin : Determinants of Laplacians on compact surfaces with conical singularities бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Victor Kalvin : Determinants of Laplacians on compact surfaces with conical singularities

Due to a technical error, the sound is missing for the first few minutes. Audio begins at 5.38.

Abstract:
In this talk I will discuss new anomaly formulae for the zeta regularized spectral determinants of Laplacians on compact Riemann surfaces. These formulae are valid for the metrics with conical singularities and, in particular, show how the determinants of Laplacians depend on the orders (angles) of conical singularities. With a simple example I will show that the extremal properties of the determinants of Laplacians on singular metrics are very different from the classical results of Osgood, Phillips, and Sarnak for the smooth metrics. If time permits, I will also discuss how this is related to Kaehler potentials of metrics on moduli spaces, the famous accessory parameters, and the celebrated DOZZ formula from the Liouville conformal field theory. The talk is based on a series of recent papers of mine.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]