Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Calculate a Cumulative Sum in Pandas Based on Conditional Values

  • vlogize
  • 2025-03-27
  • 3
How to Calculate a Cumulative Sum in Pandas Based on Conditional Values
Cumulative sum when value in other column is non-zeropythonpandascumsumrolling sum
  • ok logo

Скачать How to Calculate a Cumulative Sum in Pandas Based on Conditional Values бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Calculate a Cumulative Sum in Pandas Based on Conditional Values или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Calculate a Cumulative Sum in Pandas Based on Conditional Values бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Calculate a Cumulative Sum in Pandas Based on Conditional Values

Learn how to effectively compute a `conditional cumulative sum` in a Pandas dataframe using Python. Discover step-by-step methods to reset sums and manage conditions based on column values.
---
This video is based on the question https://stackoverflow.com/q/70842330/ asked by the user 'anonymous13' ( https://stackoverflow.com/u/11331843/ ) and on the answer https://stackoverflow.com/a/70909520/ provided by the user 'piterbarg' ( https://stackoverflow.com/u/14551426/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Cumulative sum when value in other column is non-zero

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Calculate a Cumulative Sum in Pandas Based on Conditional Values

In data analysis, calculating sums based on specific conditions can be crucial for obtaining meaningful insights. One common scenario involves computing a cumulative sum only when certain conditions are met within a dataset. This guide addresses a common problem faced in data manipulation using Python's Pandas library: how to compute a cumulative sum when values in one column meet specific criteria.

The Problem

Suppose you have a large dataframe with multiple columns, and you need to calculate the cumulative sum of a column (let's call it time) only when the values in another column (b) are -1. Furthermore, the cumulative sum should reset to 0 when b changes to 0. The challenge is ensuring that the calculation is accurate and aligns with the expected results.

Here's a simplified example of the dataframe structure:

[[See Video to Reveal this Text or Code Snippet]]

You initially tried a simple cumulative sum calculation, but it yielded incorrect results as it failed to reset when transitioning between different states of b. Hence, you require a method that correctly implements these conditions.

The Solution

To achieve the desired cumulative sum based on your criteria, follow these well-organized steps:

Step 1: Create a Grouping Mechanism

First, you need to create groups based on changes in the values of column b. This can be done by computing a cumulative sum of the conditions where b is changing.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Calculate the Cumulative Sum for Each Group

Once you have your groups, apply the sum operation on the time column, using the Pandas groupby function combined with the transform method. This allows you to compute sum values across the rows in each group.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Apply the Reset Condition

Finally, it is essential to ensure that your cumulative sum remains zero for any rows where b is not -1. This can be done with the following line:

[[See Video to Reveal this Text or Code Snippet]]

Example Code

Bringing everything together, the complete code to achieve the desired cumulative sum looks as follows:

[[See Video to Reveal this Text or Code Snippet]]

Final Output

After executing the full code, the dataframe will provide an accurate cumulative sum considering the peculiar rules you've set. Here is a snapshot of what the output will look like:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By utilizing the groupby and transform functions in Pandas, you can efficiently calculate a cumulative sum under specific conditions. It’s vital to ensure that the cumulative sum resets to zero when the criteria are not met. This method serves not just to solve your immediate problem but can also be adapted for other scenarios requiring conditional calculations in your data analysis workflows.

With this understanding, you should be well-equipped to manipulate dataframes and get the desired insights from your datasets efficiently!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]