Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Removing Duplicates from Large DataFrames in Pandas

  • vlogize
  • 2025-04-05
  • 0
Efficiently Removing Duplicates from Large DataFrames in Pandas
iterating 2 large pandas df to remove duplicatespythonpandas
  • ok logo

Скачать Efficiently Removing Duplicates from Large DataFrames in Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Removing Duplicates from Large DataFrames in Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Removing Duplicates from Large DataFrames in Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Removing Duplicates from Large DataFrames in Pandas

Learn how to efficiently check for duplicates between two large Pandas DataFrames and optimize your code for better performance.
---
This video is based on the question https://stackoverflow.com/q/73140347/ asked by the user 'MotoMatt5040' ( https://stackoverflow.com/u/19633851/ ) and on the answer https://stackoverflow.com/a/73140943/ provided by the user 'ArchAngelPwn' ( https://stackoverflow.com/u/17750431/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: iterating 2 large pandas df to remove duplicates

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Removing Duplicates from Large DataFrames in Pandas

When working with large datasets in Pandas, tasks like checking for duplicates can sometimes become cumbersome and time-consuming. This issue can be particularly evident when comparing two sizable DataFrames, especially if one has 100,000 rows and the other has 6.5 million. In this guide, we'll explore a more efficient solution for removing duplicates across such DataFrames using Python’s Pandas library.

The Problem

You have two DataFrames:

dfll: Contains 100,000 rows, which you want to check for duplicates.

wdnc: Contains 6.5 million rows, against which you want to compare dfll.

The goal is to identify and count how many times the entries from dfll appear anywhere in wdnc. Initial attempts using nested loops were found to be incredibly slow and inefficient. Here's a snippet of the initial approach:

[[See Video to Reveal this Text or Code Snippet]]

The Inefficiencies of Nested Loops

The above code uses nested loops to check each row in dfll against all rows in wdnc. While this method achieves the task, it is also very inefficient, especially with large datasets. Each iteration of the outer loop scales with the size of the wdnc DataFrame, making it a O(n*m) operation in terms of time complexity where n and m are the sizes of the DataFrames.

A Better Approach Using Pandas

To speed up this process, we can leverage Pandas' built-in functionalities, which are optimized for handling large datasets. Here's a suggested method that avoids nested loops entirely:

Step 1: Convert to NumPy Array

First, extract the values from the dfll DataFrame and convert them to a NumPy array. This is done for faster lookup.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Use isin for Efficient Duplicates Checking

Utilize the isin method offered by Pandas. This method is vectorized and performs the operation much faster than normal Python loops.

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code

check_list is created to store the values from the dfll DataFrame.

The isin function checks for each entry in wdnc['phone'] if it exists in check_list, returning a boolean Series.

Using this Series, you can filter out duplicates easily and efficiently.

Conclusion

By avoiding nested loops and utilizing built-in Pandas functionalities, we can significantly enhance our code's performance when dealing with large datasets. The solution provided above not only simplifies the process but also drastically reduces the computation time required to identify duplicates.

If you often work with large DataFrames, always look for vectorized operations, as they can make a huge difference in efficiency! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]