Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть SOCK A Benchmark for Measuring Self-Replication in Large Language Models

  • Mayuresh Shilotri
  • 2025-12-11
  • 0
SOCK A Benchmark for Measuring Self-Replication in Large Language Models
AI ExplainedAI ResearchArXivArtificial IntelligenceArxivComputer ScienceDeep LearningGenerative AILLMLarge Language ModelsLarge Language Models (LLMs)Machine LearningNeural NetworksReinforcement Learningneural networks
  • ok logo

Скачать SOCK A Benchmark for Measuring Self-Replication in Large Language Models бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно SOCK A Benchmark for Measuring Self-Replication in Large Language Models или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку SOCK A Benchmark for Measuring Self-Replication in Large Language Models бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео SOCK A Benchmark for Measuring Self-Replication in Large Language Models

Paper: https://arxiv.org/abs/2509.25643

Title: SOCK: A Benchmark for Measuring Self-Replication in Large Language Models

Authors: Justin Chavarria, Rohan Raizada, Justin White, Eyad Alhetairshi

Abstract: We introduce SOCK, a benchmark command line interface (CLI) that measures large language models' (LLMs) ability to self-replicate without human intervention. In this benchmark, self-replication is defined not only as an LLM's ability to create a functioning and running copy of itself, but also the ability for that self-replication to persist and occur across different computational contexts. Accordingly, we've developed a system to categorize LLMs based on broad self-replication capabilities in two general classes, Replication-Capability Levels (RCL) and Persistence-Capability Levels (PCL). Using a five-task suite based on practically manipulable modern CLI utilities and computer processes, experiments are orchestrated in a controlled environment with an LLM acting agentically. The performance of the LLM on agent tasks is then computed to produce an R-score (a quantitative evaluation of overall self-replication ability) and data used to categorize LLMs into specific RCL-PCL matrices. SOCK offers two primary contributions: (1) Provides the first formalized definitions and benchmark suite for evaluating LLM self-replication, with the goal of establishing a standard for future research, to our knowledge; (2) Allows the industry to track the effectiveness of future multi-agent systems and mitigate potential self-replication threat vectors within them. The results compiled from evaluating a variety of open-weight and proprietary frontier models reveal significant obstacles to persistent self-replication and multi-agent systems, including context retention and multi-agent decision-making. We propose future research directions to safely reduce the severity of these obstacles, potentially lowering future risk of more functional multi-agent systems.

Welcome to the Mayuresh Shilotri's Youtube . Maintained by Mayuresh Shilotri



You can follow me at

Blog - https://shilotri.com/

LinkedIn -   / mayureshshilotri  

Twitter -   / mshilotri  



Note: I only claim to have read the research paper and created a Video using AI tool. I am not the author. All intellectual heavy lifting was performed by the respective authors. 🙏

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]