Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Do Recommender Systems Promote Local Music? A Reproducibility Study Using Music Streaming Data

  • ACM RecSys
  • 2025-02-18
  • 60
Do Recommender Systems Promote Local Music? A Reproducibility Study Using Music Streaming Data
recsys
  • ok logo

Скачать Do Recommender Systems Promote Local Music? A Reproducibility Study Using Music Streaming Data бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Do Recommender Systems Promote Local Music? A Reproducibility Study Using Music Streaming Data или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Do Recommender Systems Promote Local Music? A Reproducibility Study Using Music Streaming Data бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Do Recommender Systems Promote Local Music? A Reproducibility Study Using Music Streaming Data

by Kristina Matrosova (Geographie-Cités), Lilian Marey (Télécom Paris), Guillaume Salha-Galvan (Deezer Research), Thomas Louail (Geographie-Cités), Olivier Bodini (Université Sorbonne Paris Nord) and Manuel Moussallam (Deezer Research)

Abstract
This paper examines the influence of recommender systems on local music representation, discussing prior findings from an empirical study on the LFM-2b public dataset. This prior study argued that different recommender systems exhibit algorithmic biases shifting music consumption either towards or against local content. However, LFM-2b users do not reflect the diverse audience of music streaming services. To assess the robustness of this study’s conclusions, we conduct a comparative analysis using proprietary listening data from a global music streaming service, which we publicly release alongside this paper. We observe significant differences in local music consumption patterns between our dataset and LFM-2b, suggesting that caution should be exercised when drawing conclusions on local music based solely on LFM-2b. Moreover, we show that the algorithmic biases exhibited in the original work vary in our dataset, and that several unexplored model parameters can significantly influence these biases and affect the study’s conclusion on both datasets. Finally, we discuss the complexity of accurately labeling local music, emphasizing the risk of misleading conclusions due to unreliable, biased, or incomplete labels. To encourage further research and ensure reproducibility, we have publicly shared our dataset and code.

Full Text: https://dl.acm.org/doi/10.1145/364045...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]