Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding the Difference Between my_list and my_list[:] in Python Recursive Algorithms

  • vlogize
  • 2025-04-09
  • 0
Understanding the Difference Between my_list and my_list[:] in Python Recursive Algorithms
Why does `my_list` and `my_list[:]` return different outputs for a simple recursive algorithm?python
  • ok logo

Скачать Understanding the Difference Between my_list and my_list[:] in Python Recursive Algorithms бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding the Difference Between my_list and my_list[:] in Python Recursive Algorithms или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding the Difference Between my_list and my_list[:] in Python Recursive Algorithms бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding the Difference Between my_list and my_list[:] in Python Recursive Algorithms

Discover why `my_list` and `my_list[:]` yield different results in a Python recursive permutation algorithm and learn how to avoid common pitfalls when using mutable default arguments.
---
This video is based on the question https://stackoverflow.com/q/73532798/ asked by the user 'Stan Shunpike' ( https://stackoverflow.com/u/4422095/ ) and on the answer https://stackoverflow.com/a/73532859/ provided by the user 'pigrammer' ( https://stackoverflow.com/u/19846219/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Why does `my_list` and `my_list[:]` return different outputs for a simple recursive algorithm?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the Difference Between my_list and my_list[:] in Python Recursive Algorithms

When working with recursive algorithms in Python, it's not uncommon to run into situations where seemingly minor changes can have significant effects on the output. One such case is the difference between using my_list and my_list[:]. This distinction can be crucial, especially in the context of a recursive permutation function. This guide aims to clarify why these two expressions behave differently and how this impacts your code.

The Problem: Unexpected Outputs in Recursive Algorithms

Consider the following recursive function designed to generate all permutations of a list of numbers:

[[See Video to Reveal this Text or Code Snippet]]

This code returns the expected permutations of [1, 2, 3]. However, if we modify the line combos.append(combo[:]) to combos.append(combo), the output turns into empty lists:

[[See Video to Reveal this Text or Code Snippet]]

Why does this happen?

The Explanation: Understanding Mutable and Immutable Objects

What is my_list[:]?

When you use the slicing operation my_list[:], you're creating a new list that is a shallow copy of my_list. The contents of this new list are the same as those in the original list, but it's a separate object in memory. You can confirm this with the is operator:

[[See Video to Reveal this Text or Code Snippet]]

What Happens With Default Mutable Arguments?

In Python, using a mutable object (like a list) as a default argument can lead to unintended side effects. Here's what happens in our recursive function:

When you append combo directly to combos, you're not creating a separate instance. Instead, you're adding a reference to the same list object.

As you modify combo (by appending and popping), all references in combos reflect these changes.

Consequently, when you reach the end of your recursive call and attempt to append combo, it may not contain the expected values, leading to unexpected outputs (empty lists).

Best Practices: Avoiding This Pitfall

To avoid these issues, always ensure that you create copies of mutable objects when needed. Here are two key strategies:

Use Slicing: Always create a shallow copy using slicing (combo[:]) when appending mutable objects to a list.

Avoid Mutable Defaults: Instead of using a mutable default argument, initialize the variable within the function:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

The difference between my_list and my_list[:] may seem subtle, but comprehending this distinction can prevent frustrating errors, especially in recursive algorithms. By creating copies of mutable objects and using safer defaults, you'll be well on your way to writing more reliable Python code. Always remember: when in doubt, it's better to make an explicit copy rather than dealing with the unexpected consequences of mutable references.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]