Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть TL;DR 🔊 Introduction to Statistical Learning: Episode 6, Linear Model Selection and Regularization

  • Brandon Foltz
  • 2023-10-27
  • 485
TL;DR 🔊 Introduction to Statistical Learning: Episode 6, Linear Model Selection and Regularization
brandon foltzstats 101statistics 101TLDR statisticsTL;DR statisticsmachinelearningTL;DR machinelearningLinear ModelSubset SelectionShrinkageRidge RegressionLassoStepwise SelectionRegression AnalysisRegularizationlinear regressionlinear modellinear model selectionmodel fitmodel error
  • ok logo

Скачать TL;DR 🔊 Introduction to Statistical Learning: Episode 6, Linear Model Selection and Regularization бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно TL;DR 🔊 Introduction to Statistical Learning: Episode 6, Linear Model Selection and Regularization или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку TL;DR 🔊 Introduction to Statistical Learning: Episode 6, Linear Model Selection and Regularization бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео TL;DR 🔊 Introduction to Statistical Learning: Episode 6, Linear Model Selection and Regularization

📚 *Chapter 6: The Art of Precision – Linear Model Selection & Regularization* 🎬

Navigate the intriguing realm of regression analysis as Chapter 6 meticulously unpacks the art of linear model selection and the significance of regularization. Discover how the age-old linear model, though robust, sometimes needs a touch of finesse.

0:00 Introduction
0:33 Learning Objectives
1:07 Key Points
2:00 Real-World Application
2:27 Conclusion

🔹 *Main Takeaways:*
1. Learn the essence of the subset selection approach. Dive into the meticulous world of best subset, forward stepwise, and backward stepwise selection, understanding their advantages and computational implications.
2. Realize that sometimes less is more. Grasp the nuances of ridge regression and the lasso, two powerful shrinkage methods that tame coefficient estimates, ensuring they aren't running wild.
3. Embark on the journey of evaluating your models. From cross-validated prediction error to BIC, pick your tools wisely for a reliable assessment.

🔹 *Real-World Glimpses:*
Did you know that in the bustling world of finance, the fine art of subset selection proves invaluable? It's the compass for portfolio managers, guiding them toward the pivotal factors steering their portfolio's journey. From predicting stock prices to crafting strategic investment decisions, the magic of subset selection is omnipresent.

🔹 *Who Should Tune In:*
Aspiring statisticians eager to refine their regression models.
Financial analysts aiming to extract the most from their data.
Anyone curious about the nuances of linear model improvements.

🔹 *Concluding Thoughts:*
Chapter 6 serves as your guide in the labyrinth of linear models, offering tools and techniques to refine, enhance, and perfect. As you venture forth, armed with subset selection methods and shrinkage techniques, you'll be well-prepared to craft models of impeccable accuracy, bringing clarity to the chaotic world of data.

Unravel the nuances of linear models with Chapter 6, perfecting the art of precision in your data journey! 📈🔍🧮.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021).
An Introduction to Statistical Learning with Applications in R (2nd ed.). Springer.
Book URL: https://www.statlearning.com/

Note: This channel is not affiliated with Springer Publishing or the authors and just aims to provide helpful learning resources for the world.

#statistics #machinelearning #datascience #education #dataanalytics

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]