Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Node2Vec: Scalable Feature Learning for Networks | ML with Graphs (Research Paper Walkthrough)

  • TechViz - The Data Science Guy
  • 2020-12-12
  • 16781
Node2Vec: Scalable Feature Learning for Networks | ML with Graphs (Research Paper Walkthrough)
graph neural networkgnndeep learningmachine learningnlpnatural language processingnode embeddinggraph embeddingresearchstanfordnode2vecrandom walklanguage modelskip gram model word2vecunsupervisedfeature learningresearch paper walkthroughnode embeddings in graphlatent representationgraph machine learningmachine learning with graphsnetwork embeddingsnode2vec algorithmnode2vec embeddingsdfsbfsbiased random walkaiml with graphsml
  • ok logo

Скачать Node2Vec: Scalable Feature Learning for Networks | ML with Graphs (Research Paper Walkthrough) бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Node2Vec: Scalable Feature Learning for Networks | ML with Graphs (Research Paper Walkthrough) или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Node2Vec: Scalable Feature Learning for Networks | ML with Graphs (Research Paper Walkthrough) бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Node2Vec: Scalable Feature Learning for Networks | ML with Graphs (Research Paper Walkthrough)

#node2vec #graphneuralnetwork #embeddings
In this video, we will walkthrough one of the foundational papers in the field of graph neural networks called Node2Vec, that tries to learn latent representation for nodes in the graph in a unsupervised way by using the notion of skip-gram algorithm applied on Biased Random walks. This work extends the previous work of DeepWalk by introducing a controllable random walk procedure.

⏩ Abstract: Prediction tasks over nodes and edges in networks require careful effort in engineering features used by learning algorithms. Recent research in the broader field of representation learning has led to significant progress in automating prediction by learning the features themselves. However, present feature learning approaches are not expressive enough to capture the diversity of connectivity patterns observed in networks. Here we propose node2vec, an algorithmic framework for learning continuous feature representations for nodes in networks. In node2vec, we learn a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes. We define a flexible notion of a node’s network neighborhood and design a biased random walk procedure, which efficiently explores diverse neighborhoods. Our algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and we argue that the added flexibility in exploring neighborhoods is the key to learning richer representations. We demonstrate the efficacy of node2vec over existing state-ofthe-art techniques on multi-label classification and link prediction in several real-world networks from diverse domains. Taken together, our work represents a new way for efficiently learning stateof-the-art task-independent representations in complex networks.
General Terms: Algorithms; Experimentation.
Keywords: Information networks, Feature learning, Node embeddings, Graph representations.

Please feel free to share out the content and subscribe to my channel :)
⏩ Subscribe -    / @techvizthedatascienceguy  

⏩ OUTLINE:
0:00 - Abstract and Background
4:10 - IBFS and DFS traversal for Biased Random Walk
5:25 - Feature Learning Framework
9:25 - Search Bias in Node2Vec
12:30 - Node2Vec Algorithm - Pseudo Code

⏩ Paper Title: node2vec: Scalable Feature Learning for Networks
⏩ Paper: https://arxiv.org/pdf/1607.00653.pdf
⏩ Author: Aditya Grover, Jure Leskovec
⏩ Organisation: Stanford University

⏩ IMPORTANT LINKS
DeepWalk Paper -    • DEEPWALK: Online Learning of Social Repres...  
Lexical Simplification using BERT -    • LSBert: A Simple Framework for Lexical Sim...  
Supervised Extractive Summarization -    • A Supervised Approach to Extractive Summar...  
Full Playlist on BERT usecases in NLP:    • Text Summarization of COVID-19 Medical Art...  
Full Playlist on Text Data Augmentation Techniques:    • Data Augmentation using Pre-trained Transf...  
Full Playlist on Text Summarization:    • Text Summarization of COVID-19 Medical Art...  
Full Playlist on Machine Learning with Graphs:    • DEEPWALK: Online Learning of Social Repres...  
Full Playlist on Evaluating NLG Systems:    • Evaluation of Text Generation: A Survey | ...  

Enjoy reading articles? then consider subscribing to Medium membership, it just 5$ a month for unlimited access to all free/paid content. Subscribe now -   / membership  

*********************************************
If you want to support me financially which totally optional and voluntary :) ❤️
You can consider buying me chai ( because i don't drink coffee :) ) at https://www.buymeacoffee.com/TechvizC...

*********************************************
⏩ Youtube -    / @techvizthedatascienceguy  
⏩ Blog - https://prakhartechviz.blogspot.com
⏩ LinkedIn -   / prakhar21  
⏩ Medium -   / prakhar.mishra  
⏩ GitHub - https://github.com/prakhar21
*********************************************

Please feel free to share out the content and subscribe to my channel :)
⏩ Subscribe -    / @techvizthedatascienceguy  

Tools I use for making videos :)
⏩ iPad - https://tinyurl.com/y39p6pwc
⏩ Apple Pencil - https://tinyurl.com/y5rk8txn
⏩ GoodNotes - https://tinyurl.com/y627cfsa

#techviz #datascienceguy #machinelearning #graphs #graphembeddings #randomwalk #deeplearning

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]