Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть "Bayesian Methods and Probabilistic Models" with Allen Downey

  • Association for Computing Machinery (ACM)
  • 2019-02-21
  • 3878
"Bayesian Methods and Probabilistic Models" with Allen Downey
Allen DowneyACMWebinarEric MaPyMCStanprobabilistic modelsforward probabilitiesinverse probabilitiesMCMCgrid algorithmsThink Bayes
  • ok logo

Скачать "Bayesian Methods and Probabilistic Models" with Allen Downey бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно "Bayesian Methods and Probabilistic Models" with Allen Downey или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку "Bayesian Methods and Probabilistic Models" with Allen Downey бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео "Bayesian Methods and Probabilistic Models" with Allen Downey

Title: The Bayesian Zig Zag: Developing Probabilistic Models Using Grid Methods and MCMC
Speaker: Allen Downey
Date: 2/13/19

Abstract
Tools like PyMC and Stan make it easy to implement probabilistic models, but getting started can be challenging. In this talk I present a strategy for simultaneously developing and implementing probabilistic models by alternating between forward and inverse probabilities and between grid algorithms and MCMC. This process helps developers validate modeling decisions and verify their implementation. As an example, I will use a version of the "Boston Bruins problem," which I presented in Think Bayes, updated for the 2017-18 season. I will also present and request comments on my plans for the second edition of Think Bayes.

SPEAKER
Allen Downey, Professor of Computer Science, Olin College
Professor of Computer Science at Olin College in Needham, Massachusetts, and the author of Think Python, Think Bayes, Think Stats, and several other books related to computer science and data science. Previously he taught at Wellesley College and Colby College, and in 2009 was a Visiting Scientist at Google, Inc. Allen has a Ph.D. from U.C. Berkeley and B.S. and M.S. degrees from MIT. He writes a blog about Bayesian statistics and related topics called Probably Overthinking It. Several of his books are published by O’Reilly Media and all are available under free licenses from Green Tea Press.

MODERATOR
Eric Ma, Data Science and Statistical Learning Investigator, Novartis Institutes for Biomedical Research
Eric Ma is an investigator at the Novartis Institutes for Biomedical Research. He defended his ScD thesis in the Department of Biological Engineering at MIT, where he used network statistical methods to study influenza evolution and ecology. Eric has been an active member of the Boston Python community since 2012. He’s given tutorials at Python-centric and data science conferences and guided four undergraduate students his research group on computational research projects. He believes in using open data, open science, and open source tools to ensure the long-term integrity of his scientific work.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]