Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Apache Spark SQL Aggregate Improvement at Meta (Facebook)

  • Databricks
  • 2022-07-19
  • 1903
Apache Spark SQL Aggregate Improvement at Meta (Facebook)
Databricks
  • ok logo

Скачать Apache Spark SQL Aggregate Improvement at Meta (Facebook) бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Apache Spark SQL Aggregate Improvement at Meta (Facebook) или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Apache Spark SQL Aggregate Improvement at Meta (Facebook) бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Apache Spark SQL Aggregate Improvement at Meta (Facebook)

Aggregate (group-by) is one of most important SQL operations in data warehouses. It is required when we want to get aggregated insights from input datasets. Over the last year, we added a series of aggregate optimizations internally at Facebook Spark SQL, and we started to contribute back to Apache Spark recently.

(1).sort aggregate (SPARK-32461): add code generation to improve query performance, replace hash with sort aggregate when child is sorted, etc.
(2).object hash aggregate (SPARK-34286): adaptive sort-based fallback based on JVM heap memory usage during query execution.
(3).hash aggregate (SPARK-31973): adaptive bypass partial aggregate when aggregate reduction ratio is low.
(4).data source aggregate push down (SPARK-34960): aggregate push down to ORC data source by utilizing column statistics
(5).files statistics aggregate: aggregate output files (and all columns) statistics distributively when writing query output

we’ll take deep dive of above features and lessons learned.

Connect with us:
Website: https://databricks.com
Facebook:   / databricksinc  
Twitter:   / databricks  
LinkedIn:   / data.  .
Instagram:   / databricksinc  

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]