Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Use Numpy Advanced Indexing to Set Values in a 3D Array

  • vlogize
  • 2025-03-24
  • 4
How to Use Numpy Advanced Indexing to Set Values in a 3D Array
Numpy: Using an index array to set values in a 3D arraypythonnumpymultidimensional arraynumpy ndarray
  • ok logo

Скачать How to Use Numpy Advanced Indexing to Set Values in a 3D Array бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Use Numpy Advanced Indexing to Set Values in a 3D Array или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Use Numpy Advanced Indexing to Set Values in a 3D Array бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Use Numpy Advanced Indexing to Set Values in a 3D Array

Learn how to efficiently use advanced indexing with `Numpy` to modify values in a three-dimensional array. A step-by-step guide for expected outputs and examples!
---
This video is based on the question https://stackoverflow.com/q/74772104/ asked by the user 'Max S.' ( https://stackoverflow.com/u/7484371/ ) and on the answer https://stackoverflow.com/a/74772201/ provided by the user 'PaulS' ( https://stackoverflow.com/u/11564487/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Numpy: Using an index array to set values in a 3D array

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Use Numpy Advanced Indexing to Set Values in a 3D Array

Working with multidimensional arrays can be one of the most powerful features of Python, especially using the Numpy library. Sometimes, you may find yourself in a situation where you need to modify specific values in a multidimensional array based on an index array. This guide will guide you through a practical example of how to achieve this using Numpy's advanced indexing capabilities.

The Problem

Imagine you have an index array that determines where values in a three-dimensional array should change. For instance, you have an indices array of shape (2, 2, 3) that looks like this:

[[See Video to Reveal this Text or Code Snippet]]

You want to set certain values in a zero-initialized Numpy matrix to 1 based on these indices. Given that the maximum index in the example is 13, but you know it could extend to 18, you've initialized a three-dimensional array with np.zeros as follows:

[[See Video to Reveal this Text or Code Snippet]]

The goal is to utilize the indices array to produce an output that marks specific positions with 1s, resulting in an output like this:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

To achieve the desired outcome, you can employ Numpy's put_along_axis function, which allows you to set values along a specified axis according to given indices. Here’s how you can do it:

Step 1: Import Numpy

First, you need to ensure you have Numpy available in your code.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Create the One-Hot Encoding Array

Initialize the one_hot array with zeros:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Define the Indices Array

Define your indices array that contains the positions you want to modify:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Use put_along_axis

Now, set the values at the specified indices to 1:

[[See Video to Reveal this Text or Code Snippet]]

Output the Result

After executing the above steps, if you print the one_hot array, you should see the following output:

[[See Video to Reveal this Text or Code Snippet]]

This will give you:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using Numpy's advanced indexing capabilities simplifies the process of modifying multidimensional arrays based on specified indices. This method is efficient and clean, allowing you to manipulate data in large datasets with ease. Whether you’re dealing with one-dimensional arrays or complex three-dimensional structures, mastering these techniques can significantly enhance your data manipulation skills using Python.

Feel free to experiment with different shapes and values for the indices array to see how it impacts your one_hot outputs!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]