Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Multithreading REST API Calls in Python

  • vlogize
  • 2025-04-08
  • 16
Efficiently Multithreading REST API Calls in Python
Is there a way to multithread or batch REST API calls in Python?pythonmultithreadingrestget
  • ok logo

Скачать Efficiently Multithreading REST API Calls in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Multithreading REST API Calls in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Multithreading REST API Calls in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Multithreading REST API Calls in Python

Discover how to `batch` and `multithread` REST API calls in Python for better performance when dealing with large datasets.
---
This video is based on the question https://stackoverflow.com/q/76878564/ asked by the user 'travelsandbooks' ( https://stackoverflow.com/u/11937086/ ) and on the answer https://stackoverflow.com/a/76882016/ provided by the user 'travelsandbooks' ( https://stackoverflow.com/u/11937086/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Is there a way to multithread or batch REST API calls in Python?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Boosting API Call Efficiency in Python with Multithreading

Calling REST APIs is a common task in software development, especially when you need to fetch metadata or data associated with numerous identifiers or keys. However, if each API call can only handle one key at a time, the process can become painfully slow if you have a long list of keys to process. Thankfully, Python provides tools to efficiently tackle this issue through multithreading and batch processing. In this blog, we will explore how you can implement these techniques to optimize your REST API calls.

The Challenge: Slow API Calls

When you have a long list of keys and make individual API calls for each, time efficiency can become a serious bottleneck. For example, if your task involves fetching metadata for 1000 keys one by one, the time to complete will grow significantly. Therefore, the need for multithreading becomes evident: execute several API calls concurrently to reduce waiting time.

The Solution: Using Python’s ThreadPoolExecutor

By leveraging Python’s concurrent.futures module, particularly the ThreadPoolExecutor, you can create a solution that allows you to make multiple calls at once. Below is a structured way to implement this.

Step 1: Import Required Libraries

First, make sure to import the necessary libraries. You will need requests for API interactions and ThreadPoolExecutor from concurrent.futures for multithreading.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Define the API Endpoint

Set the base URL for the API you wish to call. In this case, replace 'https://api.example.com/metadata' with your actual API endpoint.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Create the Function to Fetch Metadata

Define a function that retrieves metadata for a specific key. This function will make the actual API call.

[[See Video to Reveal this Text or Code Snippet]]

This function checks the status of the response and will return the metadata if the call is successful.

Step 4: Implement Multithreading

Now, create a function that will handle the multithreading using the ThreadPoolExecutor. This function organizes the keys into manageable batches depending on the number of workers you wish to utilize.

[[See Video to Reveal this Text or Code Snippet]]

Step 5: Execute Your Function

To execute the function, provide it with your list of keys and the number of workers you want to utilize for concurrent processing:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By using Python’s multithreading capabilities, you can significantly improve the performance of REST API calls, especially when dealing with large datasets. The approach outlined above is effective for optimizing the time it takes to gather data associated with multiple keys. Consider using these techniques in your projects to help achieve faster execution times and improved resource utilization.

Whether you're an experienced developer or just starting out, using multithreading for REST API calls is a valuable skill that can help you write faster, more efficient code.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]