Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть A Comprehensive Benchmark for Automatic Graph Modeling of Relational Databases (NeurIPS 2025)

  • KAIST Data Mining Lab
  • 2025-11-04
  • 10
A Comprehensive Benchmark for Automatic Graph Modeling of Relational Databases (NeurIPS 2025)
KDDData MiningKAISTNeurIPSRelational Deep LearningRDB2G-BenchGraph Neural Network
  • ok logo

Скачать A Comprehensive Benchmark for Automatic Graph Modeling of Relational Databases (NeurIPS 2025) бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно A Comprehensive Benchmark for Automatic Graph Modeling of Relational Databases (NeurIPS 2025) или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку A Comprehensive Benchmark for Automatic Graph Modeling of Relational Databases (NeurIPS 2025) бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео A Comprehensive Benchmark for Automatic Graph Modeling of Relational Databases (NeurIPS 2025)

Recent advances have demonstrated the effectiveness of graph-based learning on relational databases (RDBs) for predictive tasks. Such approaches require transforming RDBs into graphs, a process we refer to as RDB-to-graph modeling, where rows of tables are represented as nodes and foreign-key relationships as edges. Yet, effective modeling of RDBs into graphs remains challenging. Specifically, there exist numerous ways to model RDBs into graphs, and performance on predictive tasks varies significantly depending on the chosen graph model of RDBs. In our analysis, we find that the best-performing graph model can yield up to a 10% higher performance compared to the common heuristic rule for graph modeling, which remains non-trivial to identify. To foster research on intelligent RDB-to-graph modeling, we introduce RDB2G-Bench, the first benchmark framework for evaluating such methods. We construct extensive datasets covering 5 real-world RDBs and 12 predictive tasks, resulting in around 50k graph model-performance pairs for efficient and reproducible evaluations. Thanks to our precomputed datasets, we were able to benchmark 10 automatic RDB-to-graph modeling methods on the 12 tasks about 380x faster than on-the-fly evaluation, which requires repeated GNN training. Our analysis of the datasets and benchmark results reveals key structural patterns affecting graph model effectiveness, along with practical implications for effective graph modeling. Our datasets and code are available at https://github.com/chlehdwon/RDB2G-Bench.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]