Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Jessica Mar, PhD - Developing bioinformatics approaches to understand the functional consequences...

  • Labroots
  • 2017-05-11
  • 261
Jessica Mar, PhD - Developing bioinformatics approaches to understand the functional consequences...
  • ok logo

Скачать Jessica Mar, PhD - Developing bioinformatics approaches to understand the functional consequences... бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Jessica Mar, PhD - Developing bioinformatics approaches to understand the functional consequences... или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Jessica Mar, PhD - Developing bioinformatics approaches to understand the functional consequences... бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Jessica Mar, PhD - Developing bioinformatics approaches to understand the functional consequences...

Watch this presentation on LabRoots at: https://www.labroots.com/virtual-even...

When studying the transcriptome, most of our inferences revolve around changes in average expression. However, more recent examples have demonstrated that analysis of the variability of gene expression can also highlight important regulators too. In this talk, I outline some of the bioinformatics methods my lab has developed to investigate the functional consequences of gene expression variability to understand transcriptional regulation. I present a recently published method called pathVar, which provides functional interpretation of variability changes at the level of pathways and gene sets. Application of pathVar to cancer patient cohort data will be shown to demonstrate the utility of this method. I also describe a method based on the third statistical moment, skewness, to model heterogeneously expressed genes. Using skewness-based metrics, we can uncover new genes with regulatory roles in cancer, as well as those that vary with DNA methylated loci. Collectively, this series of related studies outline the value.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]