Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Growth Curve Episode 7: Time-Varying Covariates

  • CenterStat
  • 2017-06-19
  • 9499
Growth Curve Episode 7: Time-Varying Covariates
SEMLCMstructural equation modellatent curve modelgrowth modelgrowth curvelongitudinalrepeated measuresmultilevel growth modelmlmtime-varying covariatestvctvcs
  • ok logo

Скачать Growth Curve Episode 7: Time-Varying Covariates бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Growth Curve Episode 7: Time-Varying Covariates или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Growth Curve Episode 7: Time-Varying Covariates бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Growth Curve Episode 7: Time-Varying Covariates

In a prior episode of Office Hours, Patrick discussed predicting growth by time-invariant covariates (TICs), predictors for which the numerical values are constant over time. ...

In this episode, Patrick describes the inclusion of time-varying covariates (TVCs), predictors with numerical values that can differ across time. Examples of TVCs are numerous and include time-specific measures of depression, anxiety, substance use, marital status, onset of diagnosis, or dropout from treatment, among many others. When TICs are included in a growth model, the time-invariant predictors are used to directly predict the growth factors (e.g., intercept, slope). In contrast, when TVCs are included in a growth model, the effects of the time-varying predictors bypass the growth factors and directly influence the repeated measures. There are many ways that TVC influences can be included in the model, and models can be further extended to include both TICs and TVCs simultaneously. Patrick works through a hypothetical example and concludes with a summary of strengths and limitations of these models.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]