Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Learning a Model for Inferring a Spatial Road Lane Network Graph using Self-supervision, ITSC2021

  • TIER IV
  • 2021-08-26
  • 1097
Learning a Model for Inferring a Spatial Road Lane Network Graph using Self-supervision, ITSC2021
  • ok logo

Скачать Learning a Model for Inferring a Spatial Road Lane Network Graph using Self-supervision, ITSC2021 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Learning a Model for Inferring a Spatial Road Lane Network Graph using Self-supervision, ITSC2021 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Learning a Model for Inferring a Spatial Road Lane Network Graph using Self-supervision, ITSC2021 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Learning a Model for Inferring a Spatial Road Lane Network Graph using Self-supervision, ITSC2021

Paper video presentation for "Learning a Model for Inferring a Spatial Road Lane Network Graph using Self-supervision" presented at the 24th IEEE International Conference on Intelligent Transportation (ITSC) 2021, Indianapolis, USA.

Authors: Robin Karlsson, David Robert Wong, Simon Thompson, Kazuya Takeda

Abstract: Interconnected road lanes are a central concept for navigating urban roads. Currently, most autonomous vehicles rely on preconstructed lane maps as designing an algorithmic model is difficult. However, the generation and maintenance of such maps is costly and hinders large-scale adoption of autonomous vehicle technology. This paper presents the first self-supervised learning method to train a model to infer a spatially grounded lane-level road network graph based on a dense segmented representation of the road scene generated from onboard sensors. A formal road lane network model is presented and proves that any structured road scene can be represented by a directed acyclic graph of at most depth three while retaining the notion of intersection regions, and that this is the most compressed representation. The formal model is implemented by a hybrid neural and search-based model, utilizing a novel barrier function loss formulation for robust learning from partial labels. Experiments are conducted for all common road intersection layouts. Results show that the model can generalize to new road layouts, unlike previous approaches, demonstrating its potential for real-world application as a practical learning-based lane-level map generator.

Paper: https://arxiv.org/abs/2107.01784
GitHub: https://github.com/tier4/road_lane_ne...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]