Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть TaysAI - Day 64 - E1 - Sam2 + LLama 3 - Autonomous Agent

  • Taylor Hawkes - Coding & Stuff
  • 2025-02-06
  • 11272
TaysAI - Day 64 - E1 -  Sam2 + LLama 3 - Autonomous Agent
  • ok logo

Скачать TaysAI - Day 64 - E1 - Sam2 + LLama 3 - Autonomous Agent бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно TaysAI - Day 64 - E1 - Sam2 + LLama 3 - Autonomous Agent или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку TaysAI - Day 64 - E1 - Sam2 + LLama 3 - Autonomous Agent бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео TaysAI - Day 64 - E1 - Sam2 + LLama 3 - Autonomous Agent

In this video, I continue refining an AI neural network model, specifically focusing on handling issues related to overfitting and implement improvements to the training process. Utilizing PyTorch, the exploration centers on managing how data is packed into tensors and how epochs process this data effectively. The problem of overfitting was notably affecting the model's generalization abilities which I identify and seek solutions to mitigate through various means including adjusting hyperparameters and data shuffling.

Significant portions of this session involved a deep dive into transformers and adapting state-of-the-art techniques to accommodate small datasets, which can lead to unreliable model outcomes if not handled correctly. I worked through tasks related to interactable region detection using bounding boxes and enabling systems to act on UI elements based on these detected regions. The OCR module's text extraction and bounding box analysis were crucial here, integrating with a fine-tuned detection model to extract interactable UI components.

The session referenced papers on models like Screen2Words and related UI understanding works, using concepts and techniques like Set-of-Marks to enhance model predictions. There was a significant focus on the incorporation of functionalities into prompts and fine-tuning models to generate descriptive functionalities extracted from text boxes.

Additionally, I explored the architecture of Multi-head Latent Attention and techniques like Mixture-of-Experts (MoE) to optimize the handling of extremely large context windows in transformers. This approach aims at balancing computational costs and gaining efficiency in attention mechanisms without a hefty overhead. The use of learned low-rank projections in the context of MLA was explored to reduce computational costs while retaining model expressiveness—optimized for long context handling.

Throughout this video, various aspects of model normalizing, cross-attention implementations, and extending transformer architectures with additional semantic and syntactic information were explored to refine task execution by autonomous agents. The integration of these techniques targets improving UI interaction by AI, translating tight coupling of data inputs to actionable model outputs.

Overall, this session was intense with deep technical insights into transformers' practical enhancements focusing on tangible outcomes for improved data handling and model predictions in AI design and deployment contexts.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]