Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Creating a Matrix from Dataframe in R and Python

  • vlogize
  • 2025-03-30
  • 2
Creating a Matrix from Dataframe in R and Python
Matrix from dataframe in R/Pythonpythonpandasdataframetidyr
  • ok logo

Скачать Creating a Matrix from Dataframe in R and Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Creating a Matrix from Dataframe in R and Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Creating a Matrix from Dataframe in R and Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Creating a Matrix from Dataframe in R and Python

Learn how to create a `co-occurrence matrix` from a dataframe in R and Python! This guide covers practical techniques for analyzing data containing boolean attributes across entities.
---
This video is based on the question https://stackoverflow.com/q/70827582/ asked by the user 'ella' ( https://stackoverflow.com/u/18012581/ ) and on the answer https://stackoverflow.com/a/70827898/ provided by the user 'Maurits Evers' ( https://stackoverflow.com/u/6530970/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Matrix from dataframe in R/Python

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Creating a Matrix from Dataframe in R and Python: A Step-by-Step Guide

When working with data, often we need to analyze relationships between different variables. In some cases, these variables can be represented by a dataframe with binary values, indicating whether a certain condition is met. A common use case is to create a co-occurrence matrix, which counts how many times different attributes appear together.

In this guide, we'll explore how to create such a matrix from a dataframe using both R and Python, focusing on a simple dataset regarding fruit preferences among individuals.

The Problem Statement

Imagine you have a dataframe where each row represents a person and their preference for certain fruits, represented as follows:

An ID for each person (primary key)

Columns for different fruits (Apple, Orange, Pear, Grapes) with binary values:

1 indicates that the person likes that fruit.

0 indicates that the person does not like that fruit.

For example:

IDAppleOrangePearGrapesE11011E20010E30110E41100E51001Your goal is to output a matrix that counts the number of people who like both fruits for every pair. Here’s how the desired output would look like:

AppleOrangePearGrapesApple3112Orange1210Pear1131Grapes2012The Solution in R

To achieve this in R, we can take advantage of the tidyverse package. Here’s a step-by-step breakdown of the code:

Load the necessary library: Ensure you have the tidyverse package installed and loaded.

Transform the data: Convert the dataframe into a long format for easier manipulation.

Filter and count co-occurrences: Use the expand.grid() function to calculate pairings and aggregate the counts.

Restructure the data: Transform the long-format back into a wide-format matrix.

Here’s the corresponding R code:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the R Code

pivot_longer: Transforms the dataframe from wide to long format.

filter(value > 0): Only includes rows where the person likes the fruit.

expand.grid(): Creates all pairwise combinations of the fruit names.

summarise(n = n()): Counts occurrences for each pair.

Notes on R Output

The output may slightly differ from expectations due to the nature of counting. For example, you might see diagonal elements (i.e., both fruits being the same) with non-zero values. Adjust your logic as needed.

The Solution in Python

Let’s now see how to accomplish the same task in Python using the popular pandas library.

Import the library: Ensure you have pandas installed.

Create the dataframe: Load the data in a pandas dataframe.

Find pairwise combinations and counts: Use a similar logic as in R but with Python functions.

Here’s how to do this in Python:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Python Code

The combinations function from itertools helps to create pairs of fruit.

We compute the sum of occurrences for each combination and update the matrix.

The diagonal elements are computed separately to maintain clarity.

Final Thoughts

Creating a co-occurrence matrix from a dataframe is a valuable tool for understanding relationships between different boolean attributes in your data. Whether you prefer using R or Python, both languages provide strong capabilities for your data manipulation needs.

Feel free to adapt the guidelines provided in this guide to your specific datasets and requirements!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]