Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Is my model too complex? Evaluating model formulation using model reduction

  • Microsoft Research
  • 2016-08-16
  • 106
Is my model too complex? Evaluating model formulation using model reduction
microsoft research
  • ok logo

Скачать Is my model too complex? Evaluating model formulation using model reduction бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Is my model too complex? Evaluating model formulation using model reduction или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Is my model too complex? Evaluating model formulation using model reduction бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Is my model too complex? Evaluating model formulation using model reduction

There is wide acceptance that models which seek to represent biological or environmental processes should be evaluated before they are applied. Numerous technical methods have evolved in order to address this requirement. Literature in this area is further supplemented by more philosophical discussions on the role of model evaluation/validation given that models are (nearly always) known to be approximate at best. While mechanistic models tend to be detailed, they are less detailed than the real systems they seek to describe, so judgements are being made about the appropriate level of detail within the process of model development. These judgements are difficult to test, consequently it is easy for models to become over-parameterised, potentially increasing uncertainty in predictions. Work at Nottingham has sought to address these difficulties. We propose and implement a method which explores a family of simpler (reduced) models obtained by replacing model variables with constants. The procedure iteratively searches the simpler model formulations and compares models in terms of their ability to predict observed data. Under appropriate assumptions the procedure can be implemented within a Bayesian framework enabling the results to be summarised as model probabilities and replacement probabilities for individual variables which lend themselves to mechanistic interpretation. This provides powerful diagnostic information to support model development, and can identify areas of model over-parameterisation with implications for interpretation of model results. The method has been applied to a range of different example models. In each case reduced models are identified which outperform the original full model in terms of comparisons to observations, suggesting some over-parameterisation has occurred during model development. We argue that the proposed approach is relevant to anyone involved in the development or use of process based mathematical models, especially those where understanding is encoded via empirically based relationships.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]