Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Resolving Scipy Optimize Minimize: Successful Optimization Without Iteration

  • vlogize
  • 2025-05-19
  • 0
Resolving Scipy Optimize Minimize: Successful Optimization Without Iteration
Scipy Optimize Minimize: Optimization terminated successfully but not iterating at allpythonpytorchscipy optimize minimize
  • ok logo

Скачать Resolving Scipy Optimize Minimize: Successful Optimization Without Iteration бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Resolving Scipy Optimize Minimize: Successful Optimization Without Iteration или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Resolving Scipy Optimize Minimize: Successful Optimization Without Iteration бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Resolving Scipy Optimize Minimize: Successful Optimization Without Iteration

Discover how to fix the issue of `Scipy Optimize Minimize` terminating successfully without iterations. Learn why using Pytorch can lead to this problem and how switching to Numpy can resolve it effectively.
---
This video is based on the question https://stackoverflow.com/q/72717049/ asked by the user 'Alex Ferrando' ( https://stackoverflow.com/u/19391657/ ) and on the answer https://stackoverflow.com/a/72720860/ provided by the user 'Alex Ferrando' ( https://stackoverflow.com/u/19391657/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Scipy Optimize Minimize: Optimization terminated successfully but not iterating at all

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Resolving Scipy Optimize Minimize: Successful Optimization Without Iteration

When working with optimization problems in Python, many developers encounter peculiar behaviors that warrant investigation. One such issue arises when using the scipy.optimize.minimize function, particularly when trying to optimize constants to minimize the Mean Squared Error (MSE) between a predefined function and an array. It can be frustrating when the optimizer reports success but does not iterate at all. In this post, we will delve into the potential causes of this issue and present a solution that can facilitate successful optimization.

The Problem Statement

Let's set the stage: you are attempting to minimize the MSE between a given array y and a generic function represented in pre-order notation. Your goal is to find the optimal constant parameters so that the difference between y and the function's prediction is minimized.

Code Overview

Your function uses a stack to evaluate a tree-like structure and derives predictions based on input tensors. Here’s a simplified overview of your approach:

Loss Function: Computes the squared difference between the observed values y and the predicted values based on the constants and inputs X.

Optimization Function: Utilizes scipy.optimize.minimize to find the optimal constants.

However, despite receiving messages indicating successful termination and minimal function evaluations, scipy.optimize.minimize does not iterate over possible values to minimize the loss effectively.

Investigating the Issue

Based on the output of the optimizer, the key points to note are:

Iterations: The output suggests Iterations: 0, meaning no iterations were performed.

Current Value: The loss function returns a constant value without changes, indicating that the optimizer isn't adjusting any parameters effectively.

Common Attempts to Resolve the Issue

You’ve already attempted several common strategies to handle this problem:

Changing the Optimization Method: You tried different methods such as Nelder-Mead and SLSQP without success.

Altering Return Values: You experimented with different formats for returning the loss value, but the issue persisted.

The Solution: Switching to Numpy

Through experience and community insights, we found that scipy.optimize.minimize struggles with Pytorch in particular cases. The primary solution is to switch from using PyTorch tensors to Numpy ndarrays. Here’s why this works and how to implement it:

Why Use Numpy?

Compatibility: Numpy is generally better supported in optimization libraries. Scipy's optimization functions work natively with Numpy arrays, which can lead to more reliable performance.

Tensor Behavior: Pytorch tensors may carry additional overhead and behavior that could interfere with the optimization iterations.

Implementation Steps

Convert Your Tensors to Numpy Arrays: Before passing your data into the optimization function, ensure that both X and y are converted into Numpy ndarrays.

Update Loss Function:

Modify the way predictions are calculated and ensure all operations are compatible with Numpy.

For example, adapt the loss function to work exclusively with Numpy:

[[See Video to Reveal this Text or Code Snippet]]

Run Optimization:

Execute the optimize function as before but confirm that it is now using Numpy inputs.

Conclusion

Successfully optimizing functions using scipy.optimize.minimize doesn’t have to be a daunting task. By addressing compatibility issues between Pytorch and Numpy, and converting your data types accordingly, you can unlock the power of optimization tools effectively.

If you encounter s

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]