Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть WG/GLIMPRINT Seminars: Gerlee, Hospitalization Forecasts Using Synthetic Data, February 19, 2026

  • James Glazier
  • 2026-02-19
  • 6
WG/GLIMPRINT Seminars: Gerlee, Hospitalization Forecasts Using Synthetic Data, February 19, 2026
GLIMPRINTEpidemic forecastsHospitalization forecastsInfectious diseasesPandemic preparednessPublic healthEpidemiologyDisease modelingMechanistic modelsStatistical modelsForecast evaluationEnsemble forecastingAdaptive ensemblesSynthetic outbreak dataUncertainty quantificationTime-series forecastingCOVID-19Resource allocationIMAG MSMMSM ViralBiocomplexity InstituteConsensus BuildingTrustbuildingBest PracticeModel Annotation
  • ok logo

Скачать WG/GLIMPRINT Seminars: Gerlee, Hospitalization Forecasts Using Synthetic Data, February 19, 2026 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно WG/GLIMPRINT Seminars: Gerlee, Hospitalization Forecasts Using Synthetic Data, February 19, 2026 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку WG/GLIMPRINT Seminars: Gerlee, Hospitalization Forecasts Using Synthetic Data, February 19, 2026 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео WG/GLIMPRINT Seminars: Gerlee, Hospitalization Forecasts Using Synthetic Data, February 19, 2026

Evaluation of Respiratory Disease Hospitalization Forecasts Using Synthetic Outbreak Data
Dr. Philip Gerlee, PhD
Chalmers University of Technology

Forecasts of hospitalizations of infectious diseases play an important role for allocating healthcare resources during epidemics and pandemics. Large-scale analysis of model forecasts during the COVID-19 pandemic has shown that the model rank distribution with respect to accuracy is heterogeneous and that ensemble forecasts have the highest average accuracy. Building on that work we generated a maximally diverse synthetic dataset of 324 different hospitalization time-series that correspond to different disease characteristics and public health responses. We evaluated forecasts from 14 component models and 6 different ensembles. Our results show that component model accuracy was heterogeneous and varied depending on the current rate of disease transmission. Going from 7 day to 14 day forecasts mechanistic models improved in relative accuracy compared to statistical models. A novel adaptive ensemble method outperforms all other ensembles on synthetic data, and is closely followed by a median ensemble. When evaluated on data from the COVID-19 pandemic, component models performed worse, but the ensemble accuracy was still high, with the median ensemble performing best. We also investigated the relationship between ensemble error and variability of component forecasts and show that the coefficient of variation is predictive of future error. Our findings have the potential to improve epidemic forecasting, in particular the adaptive ensemble and the ability to assign confidence to ensemble forecasts at the time of prediction based on component forecast variability.

For more information see:
Béchade, G., Lundh, T., & Gerlee, P. (2025). Evaluation of respiratory disease hospitalisation forecasts using synthetic outbreak data:
https://arxiv.org/abs/2503.22494
Gerlee, Philip, et al. (2022). Computational models predicting the early development of the COVID-19 pandemic in Sweden: systematic review, data synthesis, and secondary validation of accuracy. Scientific Reports 12: 13256:
https://www.nature.com/articles/s4159...

Contents
00:00 - Introduction
04:35 - IMOBio Seminar Series - Lessons Learned from Modeling COVID-19, Series Introduction, presented by Jacob Barhak
07:04 - Evaluation of Respiratory Disease Hospitalization Forecasts Using Synthetic Outbreak Data, presented by Philip Gerlee
45:26 - Discussion between Philip Gerlee and Jacob Barhak
50:06 - General Discussion and Questions

For a copy of the slides for this video visit:
https://drive.google.com/file/d/1eHKF...

Moderated by: Jacob Barhak and James A.Glazier

If you found this video useful, please check out our other videos on computational modeling, infection and immunology:    • IMAG/MSM WG and GLIMPRINT Seminars on Mult...  

Please consider joining our IMAG/MSM WG on Multiscale Modeling and Viral Pandemics: https://www.imagwiki.nibib.nih.gov/co...

Please also consider joining the Global Alliance for Immune Prediction and Intervention: http://glimprint.org/

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]