Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Combining Two Sets of Data Frames with Different Columns in Pandas

  • vlogize
  • 2025-03-31
  • 1
Combining Two Sets of Data Frames with Different Columns in Pandas
How to combine two sets of data frames with different columnspythonpandas
  • ok logo

Скачать Combining Two Sets of Data Frames with Different Columns in Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Combining Two Sets of Data Frames with Different Columns in Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Combining Two Sets of Data Frames with Different Columns in Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Combining Two Sets of Data Frames with Different Columns in Pandas

Learn how to easily combine two pandas DataFrames with different column structures into one cohesive table using Python, with clear examples and code snippets.
---
This video is based on the question https://stackoverflow.com/q/73949786/ asked by the user 'Paul' ( https://stackoverflow.com/u/18781205/ ) and on the answer https://stackoverflow.com/a/73950107/ provided by the user 'bitflip' ( https://stackoverflow.com/u/20027803/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to combine two sets of data frames with different columns

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Combining Two Sets of Data Frames with Different Columns in Pandas

Working with data can be challenging, especially when you're faced with the need to merge two data sets that have different columns. In this guide, we will tackle the problem of combining two pandas DataFrames into one single DataFrame in Python. We'll go through the issue step-by-step and provide you with clear solutions so that you can effectively work with your data.

The Problem: Different DataFrame Structures

You have two sets of DataFrames:

DataFrame df contains a label and one column of percentage values.

DataFrame df1 contains a different label and another percentage value.

Here's a summary of the DataFrames you are dealing with:

DataFrame df

Labelcol1adidas26%Jordan1.6%Asics1.7%DataFrame df1

Answer Code Labelcol2adidas11%Jordan16%Asics1%You want to create a new DataFrame that combines these two DataFrames into one table like this:

Labelcol1col2adidas26%11%Jordan1.6%16%Asics1.7%1%The Solution: Merging DataFrames

To achieve the desired result, you can use the merge() function from the pandas library. There are two main approaches you can take here, depending on how you want to handle the column names.

Approach 1: Merging with Different Column Names

If you want to keep the original column names, you should specify which columns to join on using the left_on and right_on parameters. Here's how you can do it:

[[See Video to Reveal this Text or Code Snippet]]

Approach 2: Renaming Columns for Simplicity

If you prefer a cleaner approach, you can rename the columns in the second DataFrame (df2) to match those in the first DataFrame (df1). This way, you can use the on parameter to directly join them:

[[See Video to Reveal this Text or Code Snippet]]

Result Interpretation

Running either of these scripts will yield the desired combined DataFrame:

Labelcol1col2adidas26%11%Jordan1.6%16%Asics1.7%1%This new DataFrame now contains both columns from the original DataFrames in a neatly organized format.

Conclusion

Combining two DataFrames in pandas with different column names is straightforward when you understand how to use the merge() function effectively. By either specifying the join keys with left_on and right_on or by renaming columns to match, you can create a unified DataFrame that meets your needs.

With these techniques in hand, you can now handle similar situations in your data analysis projects with ease. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]