Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Convert Value Counts of Multiple Columns to a Pandas DataFrame

  • vlogize
  • 2025-04-11
  • 0
How to Convert Value Counts of Multiple Columns to a Pandas DataFrame
Convert value counts of multiple columns to pandas dataframepandasdata science
  • ok logo

Скачать How to Convert Value Counts of Multiple Columns to a Pandas DataFrame бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Convert Value Counts of Multiple Columns to a Pandas DataFrame или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Convert Value Counts of Multiple Columns to a Pandas DataFrame бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Convert Value Counts of Multiple Columns to a Pandas DataFrame

Learn to effectively convert value counts of multiple columns into a `pandas` DataFrame, obtaining percentage distributions for categorical data.
---
This video is based on the question https://stackoverflow.com/q/73529539/ asked by the user 'Patrik' ( https://stackoverflow.com/u/18009048/ ) and on the answer https://stackoverflow.com/a/73529635/ provided by the user 'Quang Hoang' ( https://stackoverflow.com/u/4238408/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Convert value counts of multiple columns to pandas dataframe

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Converting Value Counts of Multiple Columns to a Pandas DataFrame

When working with data in Python, especially using the pandas library, one common task is calculating the percentage distribution of categorical values across multiple columns. This is particularly useful when you have a dataset with discrete values and you want to quickly assess the distribution of these values.

The Dataset

Consider the following sample dataset which consists of different attributes for individuals:

NameBatchDXYREmpLateralGDXMMTCNJoe202220Alan011200Josh112112Max010002The columns, such as Batch, DXYR, Emp, and others can only take three distinct values: 0, 1, and 2. The task is to calculate the percentage of each value (from 0 to 2) across all these columns and present this in an organized pandas DataFrame.

The Challenge

You might already be using a simple loop to compute value counts for each column, as shown below:

[[See Video to Reveal this Text or Code Snippet]]

However, this would yield outputs in a series format for each column, which is not the most usable or readable format for further analysis.

Expected Output

The goal is to store the calculated percentages in a structured format resembling the following DataFrame:

BatchDXYREmpLateralGDXMMTCNCount_0_percent98.3252.52254.544.253.476.01Count_1_percent0.4434.54343.544.546.522.44Count_2_percent1.364.3442.8712.61.882.567The Solution

There are several methods to solve this problem. Below are a few efficient approaches:

Method 1: Using pd.crosstab

You can melt the DataFrame to transform it from wide to long format, then use pd.crosstab to calculate the normalized counts:

[[See Video to Reveal this Text or Code Snippet]]

Method 2: Using melt with groupby().value_counts()

A slightly more verbose but efficient approach is to combine melt with the groupby() and value_counts() functions:

[[See Video to Reveal this Text or Code Snippet]]

Method 3: Using apply

An alternative approach is to use the apply method directly to compute value counts across the DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Final Touch

After executing one of the methods mentioned above, you can format the resulting DataFrame to achieve your final desired structure, ensuring it is readable and useful for analysis.

Conclusion

Calculating value counts in a pandas DataFrame can be streamlined with the right methods. Using techniques like melting, crosstab, and groupby, you can convert your data into an organized and understandable format, making further analysis straightforward. With these approaches, you can effectively manage and interpret your dataset.

By exploring and applying these methods, you can leverage the full power of pandas to handle categorical data analysis proficiently.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]