Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть June 4, 2025, Jennifer Dionne [Stanford University]

  • Q-FARM Stanford
  • 2025-06-06
  • 5190
June 4, 2025, Jennifer Dionne [Stanford University]
  • ok logo

Скачать June 4, 2025, Jennifer Dionne [Stanford University] бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно June 4, 2025, Jennifer Dionne [Stanford University] или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку June 4, 2025, Jennifer Dionne [Stanford University] бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео June 4, 2025, Jennifer Dionne [Stanford University]

Title: Exploring light and life: Classical and quantum nanophotonics for scalable molecular sensing and sequencing

Abstract: The earth’s biosphere is incredibly information-rich, with estimated information transmission rates exceeding those of the technosphere by 9 orders of magnitude (Lingam et al, Life 13, 1850, 2023). Yet, current methods to extract this information are slow and laborious, hindering our ability to understand the genesis and evolution of biochemical systems, and to optimize their performance. Here, we present nanophotonic methods that may enable unprecedented data about biochemical systems, at rates previously unattainable. First, we describe our lab’s Si-photonic “Very-large-scale Integrated high-Q Nanophotonic Pixels” (VINPix). These photonic resonators achieve high-Q factors, subwavelength mode volumes, and controlled dipole-like radiation, simultaneously, with Q-factors from the thousands to millions, and resonator densities exceeding 100M/cm2. By combining VINPix arrays with acoustic bioprinting for local chemical functionalization, we develop Si chips and the associated AI framework that detect multi-omic signatures on the same platform. We discuss integration of these sensors with workflows in Stanford’s Clinical Laboratories for label-free interrogation of the tumor-immune microenvironment, as well as with autonomous underwater robots from Monterey Bay Aquarium Research Institute (MBARI) for ocean biodiversity monitoring. Then, we describe how these chips can be used for peptide sequencing. By tailoring each resonator for strong Raman enhancement, we demonstrate high-resolution identification and de-novo sequencing of wildtype and mutated human leukocyte antigens. We also show how VINPix can be converted into reaction sites for DNA molecular synthesis by integrating optically absorbing heating elements. Reactions at each of the nanoantennas can be activated by a unique combination of optical wavelength and polarization, eliminating errors seen in other solid-state synthesis platforms. Further, the high-Q of each VINPix prevents spectral and spatial crosstalk between the nanoantennas, enabling maximum molecular sequence diversity with minimal error. Finally, we present our work uniting nanophotonics and mechanobiology to develop a new class of in vivo force probes, “microgauges”. Our design is based on inorganic nanoparticles that, when excited in the near-infrared, emit light of a different color in response to compressive strain. We feed these nanoparticles to freely crawling worms, who readily ingest and excrete these sensors without measurable toxicity. We dynamically measure force changes during digestion, and show that the temporal pattern of force generation is consistent with the timing of action potentials. Collectively, we anticipate that these nanophotonic platforms can shed completely new data on the biosphere – from improved understanding of molecular communication systems, to optimization of novel biochemical sensing and synthesis platforms for sustainability. models.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]