Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Model-based trees and random forests for personalized treatment effect estimation

  • Heidi Seibold Research
  • 2020-05-05
  • 347
Model-based trees and random forests for personalized treatment effect estimation
machine learningtreesrandom forestspersonalized medicinesubgroup analyses
  • ok logo

Скачать Model-based trees and random forests for personalized treatment effect estimation бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Model-based trees and random forests for personalized treatment effect estimation или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Model-based trees and random forests for personalized treatment effect estimation бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Model-based trees and random forests for personalized treatment effect estimation

Typical models estimating treatment effects assume that the treatment effect is the same for all individuals. Model-based recursive partitioning allows to relax this assumption and to estimate stratified treatment effects (model-based trees) or even personalised treatment effects (model-based forests). With model-based trees one can compute treatment effects for different strata of individuals. The strata are found in a data driven fashion and depend on characteristics of the individuals. Model-based random forests allow for a similarity estimation between individuals. The similarity measure can then be used to estimate personalised models. The R package model4you implements these stratified and personalised models with a focus on ease of use and interpretability so that clinicians and other users can take the model they usually use for the estimation of the average treatment effect and with a few lines of code get a visualisation that is easy to understand and interpret.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]