Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Passing Multiple Arguments in Multiprocessing executor.map() Function

  • vlogize
  • 2025-05-25
  • 0
Passing Multiple Arguments in Multiprocessing executor.map() Function
How to pass multiple arguments in Multiprocessing executor.map() functionpythonmultiprocessingarguments
  • ok logo

Скачать Passing Multiple Arguments in Multiprocessing executor.map() Function бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Passing Multiple Arguments in Multiprocessing executor.map() Function или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Passing Multiple Arguments in Multiprocessing executor.map() Function бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Passing Multiple Arguments in Multiprocessing executor.map() Function

Learn how to efficiently pass multiple arguments to functions in Python using the `multiprocessing` library's `executor.map()` feature, leveraging `functools.partial`.
---
This video is based on the question https://stackoverflow.com/q/71291252/ asked by the user 'Asad Hussain' ( https://stackoverflow.com/u/17866070/ ) and on the answer https://stackoverflow.com/a/71296469/ provided by the user 'Booboo' ( https://stackoverflow.com/u/2823719/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to pass multiple arguments in Multiprocessing executor.map() function

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Mastering the Art of Passing Multiple Arguments in Python's Multiprocessing

When working with Python's multiprocessing library, a common challenge is passing multiple arguments to a function executed in parallel. Many developers have encountered this issue, especially when trying to optimize code using the executor.map() function. If you are grappling with similar challenges, this guide will offer clarity and solutions to help you pass multiple arguments effortlessly within your multiprocessing tasks.

The Problem: Passing Multiple Arguments

Suppose you have a list of data items and a function that requires multiple arguments to operate correctly. For instance, you may need to pass:

An index of the list.

A secondary data list.

A fixed integer value.

While it's straightforward to send a single list to a function, doing the same with multiple arguments can be perplexing. Moreover, when iterating over multiple iterations in a loop, the values of these arguments may change, making global variables less practical.

Example Scenario

Consider a situation where you have a list of size n=209. You want to run a function that processes each item in the list, using both a second list and a constant variable that may change during different iterations. The initial attempt to achieve this may look something like this:

[[See Video to Reveal this Text or Code Snippet]]

Unfortunately, this approach won't work as intended.

The Solution: Using functools.partial

To effectively manage multiple arguments without relying on global variables, you can utilize the functools.partial function. This allows you to fix certain arguments of a function, so that you only pass the others during execution.

Step-by-Step Implementation

Here’s how you can implement this solution:

Import Required Modules: Ensure you import the necessary modules for multiprocessing and partial function application.

[[See Video to Reveal this Text or Code Snippet]]

Define Your Worker Function: This is the function that you want to call with varying arguments.

[[See Video to Reveal this Text or Code Snippet]]

Set Up the Main Function: Use ProcessPoolExecutor for concurrent execution and define a worker that includes fixed arguments.

[[See Video to Reveal this Text or Code Snippet]]

Example Execution

When executed, the output will display results based on the worker function's computations:

[[See Video to Reveal this Text or Code Snippet]]

Here, the outputs of the function showcase the function calling the index, processing the data with the fixed integer value, and returning the result as expected.

Conclusion

By leveraging functools.partial, you can effectively pass multiple arguments to functions executed in parallel through Python's multiprocessing library. This technique not only simplifies your code but also enhances its readability and maintainability.

Whenever you encounter similar issues of passing multiple variables, remember to consider using partial to resolve these challenges smoothly.

Now that you have mastered this approach, you're ready to take full advantage of concurrent processing in your projects! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]