Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть DataEngBytes 2023 - MEL-T2-01 - Mikiko Bazeley

  • DataEngBytes
  • 2023-10-25
  • 55
DataEngBytes 2023 - MEL-T2-01 - Mikiko Bazeley
DataOpsMLOpsData EngineeringML LIFECYCLEMikiko Bazeley
  • ok logo

Скачать DataEngBytes 2023 - MEL-T2-01 - Mikiko Bazeley бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно DataEngBytes 2023 - MEL-T2-01 - Mikiko Bazeley или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку DataEngBytes 2023 - MEL-T2-01 - Mikiko Bazeley бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео DataEngBytes 2023 - MEL-T2-01 - Mikiko Bazeley

FEATURISATION & FEATURE STORES: A CRASH COURSE IN THE ML LIFECYCLE & MLOPS. DataOps, MLOps, Data Engineering.... what's the big difference?

Squint at the job descriptions and they'd seem to be the same person, especially around featurisation. Can't DataOps tools be used for MLOps? Why is 80% of a data scientist's time stuck with data? Isn't a feature store just an expensive, overly specialised database where machine learning features get parked (only to be forgotten until a pipeline breaks)?

Much like how humans share 70% of their DNA with slugs (and 50% with bananas)* the differences, while minute, are significant.

My goal in this session is to help illuminate the challenges and vagaries of developing ML models from scratch (for production) and in the process answer the following questions:

What are the main problems MlOps tries to solve?
What does the process look like for developing a model from scratch? And why is feature engineering tricky to automate?
What is a Feature Store? What are the pain-points a feature store is meant to solve?
What are the different types of feature store or platforms that exist and which archetypes are seeing the most adoption? And why?


Mikiko Bazeley
Head of MLOps at Featureform

Mikiko Bazeley is Head of MLOps at Featureform, a Virtual Feature Store.

She's worked as an MLOps engineer, data scientist, and data analyst for companies like Mailchimp (Intuit), Teladoc, Sunrun, Autodesk as well as a handful of early stage startups.

Mikiko leverages her knowledge and experiences as a practitioner, mentor, and strategist to contribute MLOps & production ML content through LinkedIn, Youtube, & Substack, as well as partnering with companies in the ML ecosystem like Nvidia.

Her main goals are to help:
data scientists deploy better models faster;
ML platform engineers develop robust & scalable ML systems & stacks without breaking the bank; &
bring the delight back into building ML products.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]