Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Multiply Columns in a Pandas DataFrame Based on Other Values

  • vlogize
  • 2025-05-25
  • 2
How to Multiply Columns in a Pandas DataFrame Based on Other Values
Python - multiply columns based on values in other column and values located in the first row of thepythonpandasdataframe
  • ok logo

Скачать How to Multiply Columns in a Pandas DataFrame Based on Other Values бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Multiply Columns in a Pandas DataFrame Based on Other Values или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Multiply Columns in a Pandas DataFrame Based on Other Values бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Multiply Columns in a Pandas DataFrame Based on Other Values

Learn how to efficiently multiply column values in a Pandas DataFrame based on criteria from other columns, providing step-by-step instructions and code examples.
---
This video is based on the question https://stackoverflow.com/q/71191891/ asked by the user 'Ilovenoodles' ( https://stackoverflow.com/u/15040620/ ) and on the answer https://stackoverflow.com/a/71191937/ provided by the user 'Psidom' ( https://stackoverflow.com/u/4983450/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Python - multiply columns based on values in other column, and values located in the first row of the same columns

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Multiply Columns in a Pandas DataFrame Based on Other Values

Working with data often involves complex operations, especially when you're dealing with DataFrames in Python's Pandas library. One common manipulation is the task of filling in NaN values by performing multiplications based on other column values. If you find yourself baffled by how to accomplish this, you're not alone! In this guide, we'll break down a specific scenario where we want to multiply column values based on other columns.

The Problem: Filling NaN Values by Multiplying Columns

Suppose you have a DataFrame with rows of data, each containing an identifier, a weight, and several columns (T1, T2, T3, T4) filled with numeric values — but some cells are empty (NaN). Here's a simplified version of the DataFrame we are dealing with:

[[See Video to Reveal this Text or Code Snippet]]

What Are We Trying to Achieve?

We want to fill the NaN values in the T columns (T1, T2, etc.) through a multiplication process where:

The value in the weight column in each row is multiplied by the value in the first row for each corresponding T column.

For instance, for row indexed at 1 (B), we want:

B's weight (0.04) multiplied by T1's first row value (1000) to give 40.0

B's weight (0.04) multiplied by T2's first row value (2000) to give 80.0

The Solution: Using NumPy's Outer Product

To efficiently execute this operation, we can use NumPy's outer product function. This function allows you to calculate the result of multiplying two sequences with each other, yielding a matrix where each element is the result of the corresponding input elements' multiplication. Here’s how we can put this into practice:

Step-by-Step Instructions

Import the Required Libraries:
You will need to import Pandas and NumPy to manipulate the DataFrame.

[[See Video to Reveal this Text or Code Snippet]]

Create the DataFrame:
Initialize your DataFrame with the given data.

[[See Video to Reveal this Text or Code Snippet]]

Extract the T Columns:
Use the filter method to select columns starting with 'T'.

[[See Video to Reveal this Text or Code Snippet]]

Perform the Outer Product:
Utilize NumPy’s outer function to fill in the NaN values.

[[See Video to Reveal this Text or Code Snippet]]

View the Modified DataFrame:
After performing the operations, the DataFrame should now be filled out as follows:

[[See Video to Reveal this Text or Code Snippet]]

This will yield:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By leveraging Pandas and NumPy's powerful features, we can efficiently manipulate DataFrames to fill NaN values by performing calculations with column data. This method not only simplifies repetitive tasks but also improves code readability. With these steps, you can handle similar problems with ease, paving the way for more complex data manipulations in the future.

Now, give it a try with your own data, and see just how powerful these tools can be in your data analytics workflow!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]