Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Meta-Learning via Classifier(-free) Diffusion Guidance

  • Soft Robotics Lab [SRL] / ETH Zurich
  • 2023-09-12
  • 818
Meta-Learning via Classifier(-free) Diffusion Guidance
  • ok logo

Скачать Meta-Learning via Classifier(-free) Diffusion Guidance бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Meta-Learning via Classifier(-free) Diffusion Guidance или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Meta-Learning via Classifier(-free) Diffusion Guidance бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Meta-Learning via Classifier(-free) Diffusion Guidance

We introduce meta-learning algorithms that perform zero-shot weight-space adaptation of neural network models to unseen tasks. Our methods repurpose the popular generative image synthesis techniques of natural language guidance and diffusion models to generate neural network weights adapted for tasks. We first train an unconditional generative hypernetwork model to produce neural network weights; then we train a second "guidance" model that, given a natural language task description, traverses the hypernetwork latent space to find high-performance task-adapted weights in a zero-shot manner. We explore two alternative approaches for latent space guidance: "HyperCLIP"-based classifier guidance and a conditional Hypernetwork Latent Diffusion Model ("HyperLDM"), which we show to benefit from the classifier-free guidance technique common in image generation. Finally, we demonstrate that our approaches outperform existing multi-task and meta-learning methods in a series of zero-shot learning experiments on our Meta-VQA dataset.

arxiv: https://arxiv.org/abs/2210.08942
TMLR: https://https://openreview.net/forum?id=1irVj...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]