Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Select Values from a Multidimensional Numpy Array using a 1D Array

  • vlogize
  • 2025-07-31
  • 0
How to Select Values from a Multidimensional Numpy Array using a 1D Array
Iterate through multidimensional numpy array and select values from a 1D arraypythonarraysnumpy
  • ok logo

Скачать How to Select Values from a Multidimensional Numpy Array using a 1D Array бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Select Values from a Multidimensional Numpy Array using a 1D Array или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Select Values from a Multidimensional Numpy Array using a 1D Array бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Select Values from a Multidimensional Numpy Array using a 1D Array

Learn how to iterate through a multidimensional numpy array and select values from a one-dimensional array effectively, using NumPy's fancy indexing techniques.
---
This video is based on the question https://stackoverflow.com/q/67948589/ asked by the user 'billv1179' ( https://stackoverflow.com/u/3399638/ ) and on the answer https://stackoverflow.com/a/67948715/ provided by the user 'Mustafa Aydın' ( https://stackoverflow.com/u/9332187/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Iterate through multidimensional numpy array and select values from a 1D array

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Selecting Values from a Multidimensional Numpy Array using a 1D Array

When working with data in Python, particularly with the NumPy library, there are often situations where you need to extract specific values from a multidimensional array based on the values from a one-dimensional array. This guide will guide you through a straightforward method to accomplish this task using NumPy's advanced indexing features.

Understanding the Problem

Let's say you have a one-dimensional NumPy array (let’s call it one_dim_arr) of shape (99,) filled with integers representing indices. You also have a multidimensional NumPy array (let’s refer to this as multi_dim_arr) of shape (99, 3) that contains numerical data. Here is how the arrays look:

One Dimensional Array Example

[[See Video to Reveal this Text or Code Snippet]]

Multidimensional Array Example

[[See Video to Reveal this Text or Code Snippet]]

Your goal is to use the indices from one_dim_arr to extract corresponding values from multi_dim_arr, which will form a new array with selected data points.

The Solution: Fancy Indexing in NumPy

NumPy's fancy indexing makes this task simple and efficient. Fancy indexing allows you to use arrays of integer indices to reference specific elements in another array.

Steps to Select the Values

Initialize the Base Indices: Create an array of indices that will correspond to the first dimension of multi_dim_arr. This will be a range from 0 to 98 (for a total of 99 elements).

Use Fancy Indexing: You'll apply the indices from one_dim_arr to select values from multi_dim_arr.

Here's how you can implement this in code:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code

np.arange(len(multi_dim_arr)) generates an array of indices from 0 to 98.

one_dim_arr provides the respective column indices from which values in multi_dim_arr will be selected.

The resulting new_array will contain values pair-wise selected from the multidimensional array based on the indices given by the one-dimensional array.

Conclusion

Using fancy indexing in NumPy allows you to easily and efficiently select elements from a multidimensional array based on a one-dimensional array of indices. This method is not only concise but also maximizes the performance of your data manipulation tasks in Python.

Whether you are processing large datasets or just experimenting with data science, understanding and applying these techniques can significantly enhance your capabilities with NumPy. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]