Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Add Columns Based on Multiple Conditions using mutate() in R

  • vlogize
  • 2025-09-01
  • 1
How to Add Columns Based on Multiple Conditions using mutate() in R
add column based on multiple conditions with mutate() in tidy R greptidyr
  • ok logo

Скачать How to Add Columns Based on Multiple Conditions using mutate() in R бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Add Columns Based on Multiple Conditions using mutate() in R или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Add Columns Based on Multiple Conditions using mutate() in R бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Add Columns Based on Multiple Conditions using mutate() in R

This guide explains how to effectively add columns to a data frame in R based on multiple conditions using the `mutate()` function from the `tidyverse` package. Learn how to streamline your data manipulation with clear examples and explanations!
---
This video is based on the question https://stackoverflow.com/q/64502514/ asked by the user 'shu251' ( https://stackoverflow.com/u/3902509/ ) and on the answer https://stackoverflow.com/a/64502878/ provided by the user 'iago' ( https://stackoverflow.com/u/997979/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: add column based on multiple conditions with mutate() in tidy R grep

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Adding Columns Based on Multiple Conditions in R

Working with data frames in R can sometimes be a challenge, especially when it comes to manipulating and classifying large datasets. A common task is adding new columns based on several conditions derived from existing columns. This post will walk you through a practical example of how to do this using the mutate() function from the tidyverse package, particularly focusing on a scenario where you need to classify entries in a data frame based on prefixes of the column names.

The Problem Statement

Imagine you have a wide data frame with several columns that track animal counts in both zoos and in the wild. Your goal is to classify these rows based on whether they belong to the ZOO category, the WILD category, or both, based on multiple conditions derived from the data.

Given a sample data frame with various animal counts:

[[See Video to Reveal this Text or Code Snippet]]

You want to derive a new data frame with additional columns for classification, like ZOO, WILD, and CLASSIFICATION that reflect the counts based on specific conditions.

Proposed Solution

Using mutate() with across()

To achieve this classification, you can leverage the mutate() function along with across() to capture relevant columns. However, since direct selection with conditional statements like ifelse() doesn't suffice when dealing with multiple columns, we can utilize the reduce() function from the purrr package.

Step-by-step Implementation

Define an intermediate function to check for any condition across selected columns:

[[See Video to Reveal this Text or Code Snippet]]

Add the ZOO classification by checking for any counts greater than 0 across the relevant columns:

[[See Video to Reveal this Text or Code Snippet]]

Optionally use the case_when() function to classify more clearly:

[[See Video to Reveal this Text or Code Snippet]]

Creating the WILD and CLASSIFICATION columns follows a similar approach. You can combine these classification steps into one chain of operations, ultimately leading to cohesive code for your data frame transformations.

Example Output

After executing the above steps, your new data frame should look like:

[[See Video to Reveal this Text or Code Snippet]]

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

The ability to add columns based on multiple conditions in R allows for more robust data analysis and classification. By utilizing the mutate() function alongside across(), any_cols(), and case_when(), you can efficiently manage data frames, even when they contain numerous columns and complex classifications.

Make sure to explore further and apply this logic to your own datasets for enhanced data management!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]